
INSTITUTE OF PHYSICS PUBLISHING REPORTS ON PROGRESS IN PHYSICS

Rep. Prog. Phys. 69 (2006) 1637–1711 doi:10.1088/0034-4885/69/6/R02

Theoretical and experimental status of magnetic
monopoles

Kimball A Milton1

Department of Physics, Washington University, St. Louis, MO 63130, USA

E-mail: milton@nhn.ou.edu

Received 28 February 2006
Published 10 May 2006
Online at stacks.iop.org/RoPP/69/1637

Abstract

The Tevatron has inspired new interest in the subject of magnetic monopoles. First there was
the 1998 D0 limit on the virtual production of monopoles, based on the theory of Ginzburg
and collaborators. In 2000 and 2004 results from an experiment (Fermilab E882) searching
for real magnetically charged particles bound to elements from the CDF and D0 detectors
were reported. The strongest direct experimental limits, from the CDF collaboration, have
been reported in 2005. Less strong, but complementary, limits from the H1 collaboration
at HERA were reported in the same year. Interpretation of these experiments also require
new developments in theory. Earlier experimental and observational constraints on point-
like (Dirac) and non-Abelian monopoles were given from the 1970s through the 1990s, with
occasional short-lived positive evidence for such exotic particles reported. The status of the
experimental limits on monopole masses will be reported, as well as the limitation of the theory
of magnetic charge at present.
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1. Introduction

The origin of the concept of magnetic charge, if not the name, goes back to antiquity. Certain
stones in Magnesia, in Anatolia (Asia Minor), were found to exhibit an attractive force on iron
particles, and thus magnetism was discovered. (Actually there is an ancient confusion about
the origin of the name, for it may refer to Magnesia, a prefecture in Thessaly, Greece, from
whence came the settlers (‘Magnets’) of the city (or the ruins of another city) which is now in
Turkey. For a recent discussion on the etymology see [1].) Electricity likewise was apparent to
the ancients, but without any evident connection with magnetism. Franklin eventually posited
that there were two kinds of electricity, positive and negative poles or charge; there were
likewise two types of magnetism, north and south poles, but experience showed that those
poles were necessarily always associated in pairs. Cutting a magnet, a dipole, in two did not
isolate a single pole, but resulted in two dipoles with parallel orientation; the north and south
poles so created were bound to the opposite poles already existing [2]. This was eventually
formalized in Ampère’s hypothesis (1820): magnetism has its source in the motion of electric
charge. That is, there are no intrinsic magnetic poles, but rather magnetic dipoles are created
by circulating electrical currents, macroscopically or at the atomic level.

Evidently, the latter realization built upon the emerging recognition of the connection
between electricity and magnetism. Some notable landmarks along the way were Oersted’s
discovery (1819) that an electrical current produced magnetic forces in its vicinity, Faraday’s
visualization of lines of force as a physical picture of electric and magnetic fields, his
discovery that a changing magnetic field produces a electric field (Faraday’s law of magnetic
induction, 1831) and Maxwell’s crowning achievement in recognizing that a changing electric
field must produce a magnetic field, which permitted him to write his equations describing
electromagnetism (1873). The latter accomplishment, built on the work of many others, was
the most important development in the 19th century. It is most remarkable that Maxwell’s
equations, written down in a less than succinct form in 1873, have withstood the revolutions
of the 20th century, relativity and quantum mechanics, and they still hold forth unchanged as
the governing field equations of quantum electrodynamics, by far the most successful physical
theory ever discovered.

The symmetry of Maxwell’s equations was spoiled, however, by the absence of magnetic
charge, and it was obvious to many, including Poincaré [3] and Thomson [4,5], the discoverer of
the electron, that the concept of magnetic charge had utility, and its introduction into the theory
results in significant simplifications. (Faraday [6] had already demonstrated the heuristic value
of magnetic charge.) But at that time, the consensus was clearly that magnetic charge had no
independent reality, and its introduction into the theory was for computational convenience
only [7], although Pierre Curie [8] did suggest that free magnetic poles might exist. It was
only well after the birth of quantum mechanics that a serious proposal was made by Dirac [9]
that particles carrying magnetic charge, or magnetic monopoles, should exist. This was based
on his observation that the phase unobservability in quantum mechanics permits singularities
manifested as sources of magnetic fields, just as point electric monopoles are sources of
electric fields. This was only possible if the product of electric and magnetic charges was
quantized. This prediction was an example of what Gell-Mann would later call the ‘totalitarian
principle’—that anything which is not forbidden is compulsory [10]. Dirac eventually became
disillusioned with the lack of experimental evidence for magnetic charge, but Schwinger, who
became enamoured of the subject around 1965, never gave up hope. This, in spite of his failure
to construct a computationally useful field theory of magnetically charged monopoles or more
generally particles carrying both electric and magnetic charge, which he dubbed dyons (for
his musing on the naming of such hypothetical particles, see [11]). Schwinger’s failure to
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construct a manifestly consistent theory caused many, including Sidney Coleman, to suspect
that magnetic charge could not exist. The subject of magnetic charge really took off with
the discovery of extended classical monopole solutions of non-Abelian gauge theories by Wu
and Yang, ’t Hooft, Polyakov, Nambu and others [12–17]. With the advent of grand unified
theories, this implied that monopoles should have been produced in the early universe and
therefore should be present in cosmic rays. (The history of magnetic monopoles up to 1990
is succinctly summarized with extensive references in the Resource Letter of Goldhaber and
Trower [18].)

So starting in the late 1960s there was a burst of activity both in trying to develop the
theory of magnetically charged particles and in attempting to find their signature either in the
laboratory or in the cosmos. As we will detail, the former development was only partially
successful, while no evidence at all of magnetic monopoles has survived. Nevertheless, the
last few years, with many years of running of the Tevatron, and on the eve of the opening of
the LHC, have witnessed new interest in the subject, and new limits on monopole masses have
emerged. However, the mass ranges where monopoles might most likely be found are yet well
beyond the reach of earth-bound laboratories, while cosmological limits depend on monopole
fluxes, which are subject to large uncertainties. It is the purpose of this review to summarize
the state of knowledge at the present moment on the subject of magnetic charge, with the hope
of focusing attention on the unsettled issues with the aim of laying the groundwork for the
eventual discovery of this exciting new state of matter.

A word about my own interest in this subject. I was a student of Julian Schwinger, and
co-authored an important paper on the subject with him in the 1970s [19]. Many years later
my colleague in Oklahoma, George Kalbfleisch, asked me to join him in a new experiment
to set limits on monopole masses based on Fermilab experiments [20, 21]. His interest grew
out of that of his mentor Luis Alvarez, who had set one of the best earlier limits on low-mass
monopoles [22–26]. Thus, I believe I possess the bona fides to present this review.

Finally, I offer a guide to the reading of this review. Since the issues are technical,
encompassing both theory and experiment, not all parts of this review will be equally interesting
or relevant to all readers. I have organized the review so that the main material is contained in
sections and subsections, while the third level, subsubsections, contains material which is more
technical and may be omitted without loss of continuity at a first reading. Thus in section 3,
sections 3.1.1–3.1.6 constitute a detailed proof of the quantization condition, while section 3.2
describes the quantum mechanical cross section.

In this review we use Gaussian units, so, for example, the fine-structure constant is
α = e2/h̄c. We will usually, particularly in field theoretic contexts, choose natural units
where h̄ = c = 1.

2. Classical theory

2.1. Dual symmetry

The most obvious virtue of introducing magnetic charge is the symmetry thereby imparted to
Maxwell’s equations in vacuum,

∇ · E = 4πρe, ∇ · B = 4πρm,

∇ × B = 1

c

∂

∂t
E +

4π

c
je, −∇ × E = 1

c

∂

∂t
B +

4π

c
jm. (2.1)

Here ρe, je are the electric charge and current densities and ρm, jm are the magnetic charge
and current densities, respectively. These equations are invariant under a global duality
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Figure 1. Static configuration of an electric change and a magnetic monopole.

transformation. If E denotes any electric quantity, such as E, ρe or je, while M denotes
any magnetic quantity, such as B, ρm or jm, the dual Maxwell equations are invariant under

E → M, M → −E (2.2a)

or more generally

E → E cos θ + M sin θ, M → M cos θ − E sin θ, (2.2b)

where θ is a constant.
Exploitation of this dual symmetry is useful in practical calculations, even if there is no such

thing as magnetic charge. For example, its appearance may be used to facilitate an elementary
derivation of the laws of energy and momentum conservation in classical electrodynamics [27].
A more elaborate example is the use of fictitious magnetic currents for calculating diffraction
from apertures [28]. (Also see [29].)

2.2. Angular momentum

Thomson observed in 1904 [4, 5, 30, 31] the remarkable fact that a static system of an electric
(e) and a magnetic (g) charge separated by a distance R possesses an angular momentum, (see
figure 1). The angular momentum is obtained by integrating the moment of the momentum
density of the static fields:

J =
∫

(dr)r × G =
∫

(dr)r × E × B
4πc

= 1

4πc

∫
(dr)r ×

[
er
r3

× g(r − R)

(r − R)3

]
= eg

c
R̂, (2.3)

which follows from symmetry (the integral can only supply a numerical factor, which turns
out to be 4π [27]). The quantization of charge follows by applying semiclassical quantization
of angular momentum:

J · R̂ = eg

c
= n

h̄

2
, n = 0, ±1, ±2, . . . , (2.4a)

or

eg = m′h̄c, m′ = n

2
. (2.4b)

(Here, and in the following, we use m′ to designate this ‘magnetic quantum number’. The prime
will serve to distinguish this quantity from an orbital angular momentum quantum number or
even from a particle mass.)

2.3. Classical scattering

Actually, earlier in 1896, Poincaré [3] investigated the motion of an electron in the presence of
a magnetic pole. This was inspired by a slightly earlier report of anomalous motion of cathode
rays in the presence of a magnetized needle [32]. Let us generalize the analysis to two dyons
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Figure 2. The relative motion of two dyons is confined to the surface of a cone about the direction
of the angular momentum.

(a term coined by Schwinger in 1969 [11]) with charges e1, g1, and e2, g2, respectively. There
are two charge combinations:

q = e1e2 + g1g2, κ = −e1g2 − e2g1

c
. (2.5)

Then the classical equation of relative motion is (µ is the reduced mass and v is the relative
velocity)

µ
d2

dt2
r = q

r
r3

− κv × r
r3

. (2.6)

The constants of the motion are the energy and the angular momentum,

E = 1

2
µv2 +

q

r
, J = r × µv + κ r̂. (2.7)

Note that Thomson’s angular momentum (2.3) is prefigured here.
Because J · r̂ = κ , the motion is confined to a cone, as shown in figure 2. Here the angle

of the cone is given by

cot
χ

2
= l

|κ| , l = µv0b, (2.8)

where v0 is the relative speed at infinity and b is the impact parameter. The scattering angle θ

is given by

cos
θ

2
= cos

χ

2

∣∣∣∣sin

(
ξ/2

cos χ/2

)∣∣∣∣ , (2.9a)

where

ξ

2
=




arctan

( |κ|v0

q
cot

χ

2

)
, q > 0,

π − arctan

( |κ|v0

|q| cot
χ

2

)
, q < 0.

(2.9b)

When q = 0 (monopole-electron scattering), ξ = π . The impact parameter b(θ) is a multiple-
valued function of θ , as illustrated in figure 3. The differential cross section is therefore

dσ

d

=
∣∣∣∣ b db

d(cos θ)

∣∣∣∣ =
(

κ

µv0

)2 ∑
χ

1

4 sin4 χ

2

∣∣∣∣ sin χ dχ

sin θ dθ

∣∣∣∣︸ ︷︷ ︸
g(θ)

. (2.10)

Representative results are given in [19] and reproduced here in figure 4.
The cross section becomes infinite in two circumstances; first, when

sin θ = 0 (sin χ �= 0), θ = π, (2.11)
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Figure 3. Scattering angle θ as a function of the impact parameter variable χ . Here kπ = |κ|v0/q.

we have what is called a glory. For monopole-electron scattering this occurs for
χg

2
= 1.047, 1.318, 1.403, . . . . (2.12)

The other case in which the cross section diverges is when
dθ

dχ
= 0. (2.13)

This is called a rainbow. For monopole-electron scattering this occurs at

θr = 140.1◦, 156.7◦, 163.5◦, . . . . (2.14)

For small scattering angles we have the generalization of the Rutherford formula:

dσ

d

= 1

(2µv0)2

{(
e1g2 − e2g1

c

)2

+

(
e1e2 + g1g2

v0

)2
}

1

(θ/2)4
, θ � 1. (2.15)

Note that for electron–monopole scattering, e1 = e, e2 = 0, g1 = 0, g2 = g, this cross section
differs from the Rutherford one for electron–electron scattering by the replacement

e2

v
→ g

c
. (2.16)

This is a universal feature which we (and others) used in our experimental analyses.
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Figure 4. Classical cross section for monopole-electron and dyon–dyon scattering. Again,
kπ = |κ|v0/q, while g(θ) = (µv0/κ)2(dσ/d
).

3. Quantum theory

Dirac showed in 1931 [9] that quantum mechanics was consistent with the existence of magnetic
monopoles provided the quantization condition holds,

eg = m′h̄c, (3.1)

where m′ is an integer or an integer plus 1/2, which explains the quantization of electric charge.
This was generalized by Schwinger to dyons:

e1g2 − e2g1 = −m′h̄c. (3.2)

(Schwinger sometimes argued [33] that m′ was an integer or perhaps an even integer.) We
will demonstrate these quantization conditions in the following. Henceforth, in this section
we shall set h̄ = c = 1.

3.1. Vector potential

One can see where charge quantization comes from by considering quantum mechanical
scattering. To define the Hamiltonian, one must introduce a vector potential, which must
be singular because

∇ · B �= 0 ⇒ B �= ∇ × A. (3.3)

For example, a potential singular along the entire line n̂ is

A(r) = −g

r

1

2

(
n̂ × r

r − n̂ · r
− n̂ × r

r + n̂ · r

)
= −g

r
cot θφ̂, (3.4)
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where the latter form applies if n̂ = ẑ, which corresponds to the magnetic field produced by a
magnetic monopole at the origin,

B(r) = g
r
r3

. (3.5)

In view of (3.3), we can write

B(r) = ∇ × A(r) + gf(r), (3.6a)

where

∇ · f(r) = 4πδ(r), (3.6b)

in which f has support only along the line n̂ passing through the origin. The line of singularities
is called the string and f is called the string function. Invariance of the theory (wavefunctions
must be single-valued) under string rotations implies the charge quantization condition (3.1).
This is a nonperturbative statement, which is proved in section 3.1.3.

3.1.1. Yang’s approach. Yang offered another approach, which is fundamentally equivalent
[34–41]. He insisted that there be no singularities but rather different potentials in different
but overlapping regions:

Aa
φ = g

r sin θ
(1 − cos θ) = g

r
tan

θ

2
, θ < π, (3.7a)

Ab
φ = − g

r sin θ
(1 + cos θ) = −g

r
cot

θ

2
, θ > 0. (3.7b)

These correspond to the same magnetic field, so they must differ by a gradient:

Aa
µ − Ab

µ = 2g

r sin θ
φ̂ = ∂µλ, (3.8)

where λ = 2gφ. Requiring now that eieλ be single-valued leads to the quantization condition,
eg = m′, m′ a half integer.

3.1.2. Spin approach. There is also an intrinsic spin formulation, pioneered by Goldhaber
[42, 43]. The energy (2.7),

E = 1

2
µv2 +

q

r
, q = e1e2 + g1g2, (3.9)

differs by a gauge transformation from

H = 1

2µ

(
p2

r +
J 2 − (J · r̂)2

r2

)
+

q

r
, (3.10)

where

J = r × p + S, (3.11a)

µv = p +
S × r
r2

. (3.11b)

The quantization condition appears as

S · r̂ = m′. (3.12)

The elaboration of this [44] is given in section 3.1.5.
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3.1.3. Strings. Let us now discuss in detail the nonrelativistic, quantum scattering of two
dyons, with electric and magnetic charges e1, g1 and e2, g2, respectively. The Hamiltonian for
the system is

H = 1

2
m1v

2
1 +

1

2
m2v

2
2 +

q

|r1 − r2| , (3.13)

where, in terms of the canonical momenta, the velocities are given by

m1v1 = p1 − e1Ae2(r1, t) − g1Am2(r1, t), (3.14a)

m2v2 = p2 − e2Ae1(r2, t) − g2Am1(r2, t). (3.14b)

The electric (e) and magnetic (m) vector potentials are

4πAe(r, t) = 4π∇λe(r, t) −
∫

(dr′)f(r − r′) × B(r′, t), (3.15a)

4πAm(r, t) = 4π∇λm(r, t) +
∫

(dr′)∗f(r − r′) × E(r′, t), (3.15b)

with

λe(r, t) =
∫

(dr′)f(r − r′) · Ae(r′, t), (3.16a)

λm(r, t) =
∫

(dr′)∗f(r − r′) · Am(r′, t). (3.16b)

Here, the functions f and ∗f represent the strings and must satisfy

∇ ·(∗) f(r − r′) = 4πδ(r-r′). (3.17)

A priori, f and ∗f need not be related and could be different for each source. So, for the case
of dyon–dyon scattering, it would seem that four independent strings are possible.

The first condition we impose on the Schrödinger equation,

H� = E�, (3.18)

is that it separates when centre-of-mass and relative coordinates are employed, which implies

e1Ae2(r1, t) = −g2Am1(r2, t) ≡ e1g2A(r), (3.19a)

e2Ae1(r2, t) = −g1Am2(r1, t) ≡ e2g1A′(r), (3.19b)

where r = r1 − r2. Correspondingly, there are relations between the various string functions,
∗f1(x) = −f2(−x), ∗f2(x) = −f1(−x), (3.20)

leaving only two independent ones. The Hamiltonian for the relative coordinates now reads

H = 1

2µ
[p − e1g2A(r) + e2g1A′(r)]2 +

q

r
, (3.21)

where µ is the reduced mass.
If we further require that only one vector potential be present, A = A′, so that only the

antisymmetric combination of electric and magnetic charges occurring in (3.2) appears, one
more relation is obtained between the two f functions,

f2(x) = −f1(−x). (3.22)

Note that (3.22) possesses two types of solutions.

• There is a single string, necessarily infinite, satisfying

f(x) = −f(−x). (3.23)

Then it is easily seen that the vector potential transforms the same way as charges and
currents do under duality transformations (2.2b). This is the so-called symmetric case.
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• There are two strings, necessarily semi-infinite, which are negative reflections of each
other.

If identical semi-infinite strings are employed, so that A �= A′, the individual charge
products e1g2 and e2g1 occur in the dynamics. The singularities of A and A′ lie on lines
parallel and antiparallel to the strings, respectively. We will see the consequences for the
charge quantization condition of these different choices in the following.

For now, we return to the general situation embodied in (3.21). For simplicity, we choose
the string associated with A to be a straight line lying along the direction n̂,

A =




−1

r

n̂ × r
r − (n̂ · r)

, semi-infinite

−1

r

1

2

(
n̂ × r

r − (n̂ · r)
− n̂ × r

r + (n̂ · r)

)
, infinite.

(3.24)

This result is valid in the gauge in which λe(m) ((3.16a), (3.16b)) is equal to zero. Without loss
of generality, we will take A′ to be given by (3.24) with n̂ → ẑ, which corresponds to taking
the string associated with A′ to point along the −z axis, f1 ∝ −ẑ.

We now wish to convert the resulting Hamiltonian, H, into a form H′ in which all the
singularities lie along the z axis. It was in that case that the Schrödinger equation was solved
in [19], as described in section 3.2, yielding the quantization condition (3.2). This conversion
is effected by a unitary transformation [45] (essentially a gauge transformation),

H′ = ei�He−i�. (3.25)

The differential equation determining � is

∇� = e1g2[A′(r) − A(r)]. (3.26)

We take n̂ to be given by

n̂ = sin χ cos ψ x̂ + sin χ sin ψ ŷ + cos χ ẑ, (3.27)

and use spherical coordinates [r = (r, θ, φ)], to find

� = −e1g2β(n̂, r), (3.28)

where, for the semi-infinite string (Dirac),

βD = φ − ψ + (cos θ − cos χ)F−(θ, φ − ψ, χ) − 2πη(χ − η), (3.29a)

and for the infinite string (Schwinger),

βS = 1
2 [(cos θ − cos χ)F−(θ, φ − ψ, χ) + (cos θ + cos χ)F+(θ, φ − ψ, χ) − 2πη(χ − θ)].

(3.29b)

The functions occurring here are

F±(θ, α, χ) =
∫ α

0

dφ′

1 ± cos χ cos θ ± sin χ sin θ cos φ′

= 2ε(α)

| cos θ ± cos χ | arctan

[(
1 ± cos(χ + θ)

1 ± cos(χ − θ)

)1/2

tan
|α|
2

]
, (3.30)

where the arctangent is not defined on the principal branch but is chosen such that F±(θ, α, χ)

is a monotone increasing function of α. The step functions occurring here are defined by

η(ξ) =
{

1, ξ > 0,

0, ξ < 0,
(3.31a)

ε(ξ) =
{

1, ξ > 0,

−1, ξ < 0.
(3.31b)
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The phases, βD and βS , satisfy the appropriate differential equation (3.26) for θ �= χ (as well
as θ �= π − χ for βS) and are determined up to constants. The step functions η are introduced
here in order to make ei� continuous at θ = χ and π − χ , as will be explained below. We
now observe that

F±(θ, 2π + α, χ) − F±(θ, α, χ) = 2π

| cos θ ± cos χ | , (3.32)

so that the wavefunction

� = e−i�� ′, (3.33)

where � ′ is the solution to the Schrödinger equation with the singularity on the z axis, is
single-valued under the substitution φ → φ + 2π when the quantization condition (3.1) is
satisfied.

Note that integer quantization follows when an infinite string is used while a semi-infinite
string leads to half-integer quantization, sinceβS changes by a multiple of 2π whenφ → φ+2π ,
while βD changes by an integer multiple of 4π . Note that βD possesses a discontinuity, which
is a multiple of 4π , at θ = χ , while βS possesses discontinuities, which are multiples of 2π ,
at θ = χ , π − χ . In virtue of the above-derived quantization conditions, ei� is continuous
everywhere. Correspondingly, the unitary operator ei�, which relates solutions of Schrödinger
equations with different vector potentials, is alternatively viewed as a gauge transformation
relating physically equivalent descriptions of the same system, since it converts one string into
another. (Identical arguments applied to the case when only one vector potential is present
leads to the condition (3.2), where m′ is an integer or an integer plus one-half for infinite and
semi-infinite strings, respectively.)

It is now a simple application of the above results to transform a system characterized
by a single vector potential with an infinite string along the direction n̂ into one in which the
singularity line is semi-infinite and lies along the +z axis. This can be done in a variety of
ways; it is particularly easy to break the string at the origin and transform the singularities to
the z axis. Making use of (3.28) with e1g2 → −m′/2 and (3.29a) for n̂ and −n̂, we find

� = m′β ′
S(n̂, r) with β ′

S = φ − ψ + βS. (3.34)

In particular, we can relate the wavefunctions for infinite and semi-infinite singularity lines on
the z axis by setting χ = 0 in (3.34),

β ′
S = φ − ψ, (3.35)

so

�(infinite) = e−im′(φ−ψ)�(semi-infinite). (3.36)

Note that (3.36) or (3.34) reiterates that an infinite string requires integer quantization.

3.1.4. Scattering. In the above section, we related the wavefunction when the string lies
along the direction n̂ to that when the string lies along the z axis. When there is only a single
vector potential (which, for simplicity, we will assume throughout the following), this relation
is

�n̂ = e−im′β(n̂,r)� ′, (3.37)

where β is given by (3.29a), (3.29b) or (3.34) for the various cases. For concreteness, if we
take � ′ to be a state corresponding to a semi-infinite singularity line along the +z axis then
β is either βD (3.29a) or β ′

S (3.34) depending on whether the singularity characterized by n̂
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is semi-infinite or infinite. By means of (3.37), we can easily build up the relation between
solutions corresponding to two arbitrarily oriented strings, with n and n̂′, say,

�n̂′ = e−im′(β(n̂′
,r)−β(n̂,r))�n̂, (3.38)

which expresses the gauge covariance properties of the wavefunctions.
For scattering, we require a solution that consists of an incoming plane wave and an

outgoing spherical wave. We will consider an eigenstate of J · k̂, where J is the total angular
momentum

J = r × (p + m′An̂) + m′r̂ (3.39)

and k̂ is the unit vector in the direction of propagation of the incoming wave (not necessarily the
z axis). This state cannot be an eigenstate of k̂ · (r × p), since this operator does not commute
with the Hamiltonian. However, since

ei�k̂ · Je−i� = k̂ · (r × p) − m′, (3.40a)

for a reorientation of the string from n̂ to k̂,

� = m′[β(n̂, r) − βD(k̂, r)] (3.40b)

because

k̂ · (r̂ × (k̂ × r̂))

1 − k̂ · r̂
= 1 + k̂ · r̂; (3.41)

the incoming state with eigenvalue [46]

(k̂ · J)′ = −m′ (3.42)

is simply related to an ordinary modified plane wave (η is defined below in (3.47))

�in = e−i� exp
{
i
[
k · r + η ln(kr − k · r)

]}
. (3.43)

This state exhibits the proper gauge covariance under reorientation of the string.
The asymptotic form of the wavefunction is

� ∼ e−im′β(n̂,r)
∑
jm̄

Akjm̄Ym′
jm̄(r̂)eim′φ 1

kr
sin
(
kr − η ln 2kr − π

2
L + δL

)
, r → ∞.

(3.44)

The summation in (3.44) is the general form of the solution when the singularity line is semi-
infinite, extending along the +z axis. In particular, Ym′

jm̄ is a generalized spherical harmonic,
which is another name for the rotation matrices in quantum mechanics [r̂ = (θ, φ)],

〈jm′|eiψJ3 eiθJ2 eiφJ3 |jm〉 = eim′ψ 1√
2j + 1

Ym′
jm(r̂) = eim′ψU

(j)

m′m(θ)eimφ, (3.45)

δL is the Coulomb phase shift for noninteger L,

δL = arg �(L + 1 + iη) (3.46)

and

L +
1

2
=
√(

j +
1

2

)2

− m′2, η = µq

k
, q = e1e2 + g1g2. (3.47)

Upon defining the outgoing wave by

� ∼ e−i�(ei[k·r+η ln(kr−k·r)] + �out), (3.48)
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where � is given by (3.40b), we find that

�out = 1

r
ei(kr−η ln kr)eim′γ f (θ̄). (3.49)

In terms of the scattering angle, θ̄ , which is the angle between k and r, the scattering amplitude is

2ikf (θ̄) =
∞∑

j=|m′|

√
2j + 1Ym′

jm′(π − θ̄ , 0)e−i(πL−2δL). (3.50)

The extra phase in (3.49) is given by (where k̂ is characterized by θ ′, φ′ and −k̂ by π − θ ′,
φ′ ± π )

γ = βD(k̂, −k̂) + φ − φ′ ∓ π − βD(k̂, r) + φ̄, (3.51)

where

arctan
1

2
φ̄ = cos((θ + π − θ ′)/2) sin((φ − φ′ ∓ π)/2)

cos((θ − π + θ ′)/2) cos((φ − φ′ ∓ π)/2)
. (3.52)

Straightforward evaluation shows that
γ

2
= 0 (mod 2π), (3.53)

so that there is no additional phase factor in the outgoing wave.

3.1.5. Spin. Classically, the electromagnetic field due to two dyons at rest carries angular
momentum, as in section 2.2,

Sclassical = m′r̂. (3.54)

A quantum-mechanical transcription of this fact allows us to replace the nonrelativistic
description explored above, in which the interaction is through the vector potentials (apart
from the Coulomb term), by one in which the particles interact with an intrinsic spin. The
derivation of the magnetic charge problem from this point of view seems to have been carried
out first by Goldhaber [42] in a simplified context and was revived in the context of ’t Hooft–
Polyakov monopoles [13–15,46–48], where the spin is called ‘isospin.’

Before introducing the notion of spin, we first consider the angular momentum of the
actual dyon problem. For simplicity we will describe the interaction between two dyons in
terms of a single vector potential A and an infinite string satisfying (3.23). (The other cases
are simple variations on what we do here, and the consequences for charge quantization are
the same as found in section 3.1.3.) Then the relative momentum of the system is

p = µv − m′A. (3.55)

Since from (3.15a), (3.15b) we have the result in (3.6a) or

∇ × A = r
r3

− f(r), (3.56)

we have the following commutation property valid everywhere,

µv × µv = −im′
[ r
r3

− f(r)
]
. (3.57)

Motivated by the classical situation, we assert that the total angular momentum operator is
(3.39) or

J = r × µv + m′r̂. (3.58)
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This is confirmed [11] by noting that, almost everywhere, J is the generator of rotations:

1

i
[r, J · δω] = δω × r, (3.59a)

1

i
[µv, J · δω] = δω × µv − m′f(r) × (δω × r), (3.59b)

where δω stands for an infinitesimal rotation. The presence of the extra term in (3.59b) is
consistent only because of the quantization condition [33]. For example, consider the effect
of a rotation on the time evolution operator,

e−iJ·δω exp

[
−i
∫

dt H
]

eiJ·δω = exp

[
−i
∫

dt (H + δH)

]
, (3.60)

where

δH = i[H, J · δω] = m′v · [f(r) × δr], δr = δω × r. (3.61)

Using the representation for the string function,

f(r) = 4π

∫
C

dx
1

2
[δ(r − x) − δ(r + x)] , (3.62)

where C is any contour starting at the origin and extending to infinity and the notation dtv = dr,
we have

− i
∫

dt δH = −im′4π

∫
dr · (dx × δr)

1

2
[δ(r − x) − δ(r + x)] . (3.63)

Since the possible values of the integral are 0, ± 1
2 , ±1, the unitary time development operator

is unaltered by a rotation only if m′ is an integer. (Evidently, half-integer quantization results
from the use of a semi-infinite string.)

Effectively, then, J satisfies the canonical angular momentum commutation relations (also
see section 3.1.6)

1

i
J × J = J (3.64)

and is a constant of the motion
d

dt
J = 1

i
[H, J] = 0. (3.65)

And, corresponding to the classical field angular momentum (3.54), the component of J along
the line connecting the two dyons, m′, should be an integer.

The identification of m′ as an angular momentum component leads us to introduce an
independent spin operator S. We do this by first writing [11], as anticipated in (3.12), (3.11b),

m′ = S · r̂ (3.66a)

and

µv = p +
S × r
r2

, (3.66b)

which, when substituted into (3.58), yields (3.11a),

J = r × p + S. (3.67)

We now ascribe independent canonical commutation relations to S and regard (3.66a) as
an eigenvalue statement. The consistency of this assignment is verified by noting that the
commutation property

µv × µv = −im′ r
r3

(3.68)
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holds true and that S · r̂ is a constant of the motion

[S · r̂, µv] = 0. (3.69)

In this angular momentum description, the Hamiltonian, (3.21), can be written in the form

H = 1

2µ

[
p2 +

2S · L
r2

+
S2 − (S · r̂)2

r2

]
+

q

r
, (3.70)

in terms of the orbital angular momentum,

L = r × p. (3.71)

The total angular momentum J appears when the operator

p2
r = 1

r2

[
(r · p)2 +

1

i
r · p

]
(3.72)

is introduced into the Hamiltonian

H = 1

2µ

[
p2

r +
J2 − (J · r̂)2

r2

]
+

q

r
. (3.73)

In an eigenstate of J2 and J · r̂,

(J2)′ = j (j + 1), (J · r̂)′ = m′, (3.74)

(3.73) yields the radial Schrödinger equation (3.128a) solved in section 3.2. This modified
formulation, only formally equivalent to our starting point, makes no reference to a vector
potential or string.

We now proceed to diagonalize the S dependence of the Hamiltonian, (3.70) or (3.73),
subject to the eigenvalue constraint

(S · r̂)′ = m′. (3.75)

This is most easily done by diagonalizing [46] the angular momentum operator (3.67). In order
to operate in a framework sufficiently general to include our original symmetrical starting point,
we first write S as the sum of two independent spins

S = Sa + Sb. (3.76)

We then subject J to a suitable unitary transformation [42]

J′ = UJU−1, (3.77)

where

U = exp[i(Sa · φ̂)θ ] exp[i(Sb · φ̂)(θ − π)], (3.78)

which rotates Sa,b · r̂ into ±(Sa,b)3. This transformation is easily carried out by making use of
the representation in terms of Euler angles,

exp(iS · φ̂ θ) = exp(−iφS3) exp(iθS2) exp(iφS3). (3.79)

The general form of the transformed angular momentum,

J′ = r ×
[

p +
φ̂

r
sin θ

(
Sa3

1 + cos θ
+

Sb3

1 − cos θ

)]
+ r̂(Sa − Sb)

′
3, (3.80)

is subject, a priori, only to the constraint (3.75) or

(Sa − Sb)
′
3 = m′. (3.81)
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We recover the unsymmetrical and symmetrical formulations by imposing the following
supplementary eigenvalue conditions:

(1) : S ′
a3 = 0, (3.82a)

(2) : (Sa + Sb)
′
3 = 0. (3.82b)

These yield the angular momentum in the form (3.58) or (3.39), the vector potential appearing
there being, respectively,

(1) : A = − φ̂

r
cot

θ

2
, (3.83a)

(2) : A = − φ̂

r
cot θ, (3.83b)

which are (3.24) with n̂ = ẑ. (Also see (3.7b), (3.4).)
The effect of this transformation on the Hamiltonian is most easily seen from the form

(3.73),

U

[
p2

r +
J 2 − (J · r̂)2

r2

]
U−1 = p2

r +
1

r2
(r × µv)2 = (µv)2, (3.84)

making use of (3.72) or

H′ = UHU−1 = 1

2
µv2 +

q

r
. (3.85)

So by means of the transformation given in (3.78) we have derived the explicit magnetic
charge problem, expressed in terms of J′ and H′, from the implicit formulation in terms of spin.
These transformations are not really gauge transformations because the physical dyon theory
is defined only after the eigenvalue conditions (3.81), (3.82a) and (3.82b) are imposed. The
unsymmetrical condition (1), (3.82a), gives rise to the Dirac formulation of magnetic charge,
with a semi-infinite singularity line, and, from (3.81), m′ either integer or half-integer. The
symmetrical condition (2), (3.82b) gives the Schwinger formulation: an infinite singularity line
(with (3.23) holding), and integer quantization of m′. These correlations, which follow directly
from the commutation properties of angular momentum (the group structure), are precisely
the conditions required for the consistency of the magnetic charge theory, as we have seen in
section 3.1.3.

Even though the individual unitary operators U are not gauge transformations, a sequence
of them, which serves to reorient the string direction, is equivalent to such a transformation.
For example, if we formally set Sa = 0 in (3.78),

U(1) = exp(iS · φ̂(θ − π)], (3.86)

we have the transformation which generates a vector potential with singularity along the
positive z axis (3.83a), while

U(2) = exp[iS · û2(� − π)] (3.87)

generates a vector potential with singularity along n̂, the first form in (3.24), where � is the
angle between n̂ and r,

cos � = cos θ cos χ + sin θ sin χ cos(φ − ψ) (3.88)

(the coordinates of n̂ are given by (3.27)) and

û2 = n̂ × r

|n̂ × r| . (3.89)
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The transformation which carries (3.83a) into the first form in (3.24) is

U(12) = U(2)U
−1
(1) . (3.90)

Since U(12) reorients the string from the ẑ direction to the n̂ direction, it must have the form

U(12) = exp(iS · n̂�) exp(−iS · ψ̂χ). (3.91)

The angle of rotation about the n axis, �, is most easily determined by considering the spin-1/2
case S = 1

2σ and introducing a right-handed basis,

û1 = n̂, û2 = n̂ × r
|n̂ × r| , û3 = n̂ × û2. (3.92)

Then straightforward algebra yields

cos
1

2
� = sin(1/2)θ cos(1/2)χ − cos(1/2)θ sin(1/2)χ cos(φ − ψ)

sin(1/2)�
, (3.93a)

sin
1

2
� = − cos(1/2)θ sin(1/2)χ sin(φ − ψ)

sin(1/2)�
. (3.93b)

The corresponding transformation carrying the vector potential with singularities along the
negative z axis ((3.83a) with θ → θ − π ) into the vector potential with singularities along the
direction of −n̂ (the first form in (3.24) with n̂ → −n̂) is obtained from (3.91), (3.93a) and
(3.93b) (also see (3.86) and (3.87)) by the substitutions

θ → θ + π, � → � + π. (3.94)

The combination of these two cases gives the transformation of the infinite string, of which
(3.78) is the prototype.

Since the effect of exp(−iS · ψ̂χ) is completely given by

exp(−iS · ψ̂χ)S3 exp(iS · ψ̂χ) = S · n̂, (3.95)

that is, for the transformation (3.91),

U(12)

[
r ×

(
p +

φ̂

r
cot

θ

2
S3

)
− r̂S3

]
U−1

(12)

= exp(iS · n̂�)

[
r ×

(
p +

φ̂

r
cot

θ

2
S · n̂

)
− r̂S · n̂

]
exp(−iS · n̂�), (3.96)

in a state when S · n̂ has a definite eigenvalue −m′, U(12) is effectively just the gauge
transformation which reorients the string from the z axis to the n̂ direction. And, indeed,
in this case,

1

2
� = 1

2
βD(mod 2π), (3.97)

where βD is given by (3.29a) as determined by the differential equation method.

3.1.6. Singular gauge transformations. We now make the observation that it is precisely
the singular nature of the gauge transformations (3.25) and (3.85) which is required for the
consistency of the theory, that is, the nonobservability of the string. To illustrate this, we will
consider a simpler context, that of an electron moving in the field of a static magnetic charge
of strength g, which produces the magnetic field

B = g
r̂
r2

. (3.98)
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The string appears in the relation of B to the vector potential, (3.56), (3.6a) or

B = ∇ × A + gf(r), (3.99)

where the string function f satisfies (3.17). Reorienting the string consequently changes A,

A → A′, (3.100)

which induces a phase change in the wavefunction,

� → � ′ = ei��. (3.101)

The equation determining � is (3.26) or

∇� = e(A′ − A), (3.102)

which manifests that this is a gauge transformation of a singular type, since

∇ × ∇� �= 0. (3.103)

Recognition of this is essential in understanding the commutation properties of the
mechanical momentum (called µv above),

π = p − eA, (3.104)

since

π × π = −∇ × ∇ + ie(∇ × A). (3.105)

(Here, the parentheses indicate that ∇ acts only on A and not on anything else on the
right.) Consider the action of the operator (3.105) on an energy eigenstate �. Certainly
∇ × ∇� = 0 away from the string; on the string, we isolate the singular term by making a
gauge transformation reorienting the string,

� = e−i�� ′, (3.106)

where � ′ is regular on the string associated with A. Hence,

− ∇ × ∇� =
{

0 offstring,

i(∇ × ∇�)� onstring; (3.107)

so by (3.102) and (3.99),

− ∇ × ∇�(r) = iegf(r)�(r). (3.108)

Thus, when acting on an energy eigenstate (which transforms like (3.101) under a string
reorientation), (3.105) becomes

π × π → ie[(∇ × A) + gf(r)] = ieB. (3.109)

This means that, under these conditions, the commutation properties of the angular momentum
operator (3.58),

J = r × π − egr̂, (3.110)

are precisely the canonical ones:

1

i
[r, J · δω] → δω × r, (3.111a)

1

i
[π, J · δω] → δω × π. (3.111b)

In section 3.1.5, we considered the operator properties of J on the class of states for which
∇ × ∇ = 0, so an additional string term appears in the commutator (3.59b). Nevertheless, in
this space, J is consistently recognized as the angular momentum because the time evolution



1656 K A Milton

operator is invariant under the rotation generated by J. Here, we have considered the
complementary space, which includes the energy eigenstates, in which case the angular
momentum attribution of J is immediate, from (3.111a) and (3.111b).

Incidentally, note that the replacement (3.109) is necessary to correctly reduce the Dirac
equation describing an electron moving in the presence of a static magnetic charge,

(γ π + m)� = 0, (3.112)

to a nonrelativistic form, since the second-order version of (3.112) is

(π2 + m2 − eσ · B)� = 0, (3.113)

where B is the fully gauge-invariant, string-independent, field strength (3.98), rather than
(∇×A), as might be naively anticipated. This form validates the consideration of the magnetic
dipole moment interaction, including the anomalous magnetic moment coupling, which we
will consider numerically below, both in connection with scattering (section 3.2.1) and with
binding (section 9).

Similar remarks apply to the non-Abelian, spin, formulation of the theory, given by (3.70).
If we define the non-Abelian vector potential by

eA = −S × r
r2

, (3.114)

the mechanical momentum (3.66b) of a point charge moving in this field is again given by
(3.104), or

π = p − eA, (3.115)

and the magnetic field strength is determined, analogously to (3.109), by

eB = 1

i
π × π = (∇ × eA) − ieA × eA = −S · r̂

r̂
r2

. (3.116)

This reduces to the Abelian field strength (3.98) in an eigenstate of S · r̂ ,

(S · r̂)′ = −eg, (3.117)

which is a possible state, since S · r̂ is a constant of the motion,

[S · r̂, π] = 0. (3.118)

The Abelian description is recovered from this one by means of the unitary transformation
(3.79)

U = exp(−iφS3) exp(iθS2) exp(iφS3). (3.119)

Under this transformation, the mechanical momentum, (3.115), takes on the Abelian form,

UπU−1 = p + φ̂
S3

r
tan

θ

2
, (3.120)

where we see the appearance of the Abelian potential

eA = −S3
φ̂

r
tan

θ

2
, (3.121)

corresponding to a string along the −z axis. In an eigenstate of S3,

S ′
3 = (US · r̂U−1)′ = −eg, (3.122)

this is the Dirac vector potential (3.7a). To find the relation between this vector potential and
the field strength, we apply the unitary transformation (3.120) to the operator

eB = ∇ × eA + eA × ∇ − ieA × eA (3.123)
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to obtain, using Stokes’ theorem,

UeBU−1 = (∇ × eA) − iU∇ × ∇U−1 = (∇ × eA) − S3f(r), (3.124)

where f is the particular string function

f(r) = −4π k̂η(−z)δ(x)δ(y), (3.125)

η being the unit step function. In this way the result (3.99) is recovered.

3.1.7. Commentary. There is no classical Hamiltonian theory of magnetic charge, since,
without introducing an arbitrary unit of action [49, 50], unphysical elements (strings) are
observable. In the quantum theory, however, there is a unit of action, h̄, and since it is
not the action W which is observable, but exp(iW/h̄), a well-defined theory exists provided
charge quantization conditions of the form (3.2) or (3.1) are satisfied. The precise form
of the quantization condition depends on the nature of the strings, which define the vector
potentials. It may be worth noting that the situation which first comes to mind, namely, a
single vector potential with a single string, implies Schwinger’s symmetrical formulation with
integer quantization [33].

We have seen in the nonrelativistic treatment of the two-dyon system that the charge
quantization condition is essential for all aspects of the self-consistency of the theory. Amongst
these we list the nonobservability of the string, the single-valuedness and gauge-covariance of
the wavefunctions and the compatibility with the commutation relations of angular momentum.
In fact, all these properties become evident when it is recognized that the theory may be derived
from an angular momentum formulation [51–53].

3.2. Nonrelativistic Hamiltonian

We must now turn to explicit solutions of the Schrödinger equation to obtain numerical results
for cross sections. For a system of two interacting dyons the Hamiltonian corresponding to
symmetrical string along the entire z axis is

H = − h̄2

2µ

(
∇2 +

2m′

r2

cos θ

sin2 θ

1

i

∂

∂φ
− m′2

r2
cot2 θ

)
+

q

r
, (3.126)

where the quantity κ in (2.5) is replaced by the magnetic quantum number m′ defined in (3.2).
(This is (3.21) with A = A′ given by the second form in (3.24) with n̂ = ẑ.) Even though
this is much more complicated than the Coulomb Hamiltonian, the wavefunction may still be
separated:

�(r) = R(r)�(θ)eimφ, (3.127)

where the radial and angular factors satisfy(
d2

dr2
+

2

r

d

dr
+ k2 − 2µ

h̄2

q

r
− j (j + 1) − m′2

r2

)
R = 0, (3.128a)

−
[

1

sin θ

d

dθ

(
sin θ

d

dθ

)
− m2 − 2mm′ cos θ + m′2

sin2 θ

]
� = j (j + 1)�. (3.128b)

The solution to the θ equation is the rotation matrix element: (x = cos θ ),

U
(j)

m′m(θ) = 〈jm′|eiJ2θ/h̄|jm〉 ∝ (1 − x)(m
′−m)/2(1 + x)(m

′+m)/2P
(m′−m,m′+m)
j−m (x), (3.129)

where P
(m,n)
j are the Jacobi polynomials or ‘multipole harmonics’ [40]. This forces m′ to be an

integer. The radial solutions are, as with the usual Coulomb problem, confluent hypergeometric
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functions,

Rkj (r) = e−ikr (kr)LF (L + 1 − iη, 2L + 2, 2ikr), (3.130a)

η = µq

h̄2k
, k =

√
2µE

h̄
, L +

1

2
=
√(

j +
1

2

)2

− m′2. (3.130b)

Note that in general L is not an integer.
We solve the Schrödinger equation such that a distorted incoming plane wave is incident,

�in = exp
{
i
[
k · r + η ln(kr − k · r)

]}
. (3.131)

Then the outgoing wave has the form (3.49) (here θ is the scattering angle)

�out ∼ 1

r
ei(kr−η ln 2kr)f (θ), (3.132)

where the scattering amplitude is given by (3.50) or

2ikf (θ) =
∞∑

j=|m′|
(2j + 1)U

(j)

m′m′(π − θ)e−i(πL−2δL) (3.133)

in terms of the Coulomb phase shift (3.46),

δL = arg �(L + 1 + iη). (3.134)

Note that the integer quantization of m′ results from the use of an infinite (‘symmetric’) string;
an unsymmetric string allows m′ = integer + 1

2 .
We reiterate that we have shown that reorienting the string direction gives rise to an

unobservable phase. Note that this result is completely general: the incident wave makes an
arbitrary angle with respect to the string direction. Rotation of the string direction is a gauge
transformation.

By squaring the scattering amplitude, we can numerically extract the scattering cross
section. Analytically, it is not hard to see that small angle scattering is still given by the
Rutherford formula (2.15):

dσ

d

≈
(

m′

2k

)2 1

sin4 θ/2
, θ � 1, (3.135)

for electron–monopole scattering. The classical result is good roughly up to the first classical
rainbow. In general, one must proceed numerically. In terms of

g(θ) = k2

m′2 |f (θ)|2 (3.136)

we show various results in figures 5–7. Structures vaguely reminiscent of classical rainbows
appear for large m′, particularly for negative η, that is, with Coulomb attraction.

3.2.1. Magnetic dipole interaction. We can also include the effect of a magnetic dipole
moment interaction, by adding a spin term to the Hamiltonian,

HS = − eh̄

2µc
γσ · B, B = g

r
r3

. (3.137)

For small scattering angles, the spin–flip and spin–nonflip cross sections are for γ = 1 (θ � 1)

dσ

d


∣∣∣∣
F

≈
(

m′

2k

)2 sin2 θ/2

sin4 θ/2
,

dσ

d


∣∣∣∣
NF

≈
(

m′

2k

)2 cos2 θ/2

sin4 θ/2
. (3.138)
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Figure 5. Quantum electron–monopole scattering.

Figure 6. Quantum dyon–dyon scattering, m′ = 1.

Numerical results are shown in figures 8 and 9. Note from the figures that the spin flip amplitude
always vanishes in the backward direction; the spin nonflip amplitude also vanishes there for
conditions almost pertaining to an electron: m′ > 0, γ = 1.

The calculations shown in figures 5–9 were done many years ago [19], which just goes
to show that ‘good work ages more slowly than its creators.’ The history of the subject goes
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Figure 7. Quantum dyon–dyon scattering, m′ = 10, 20.

Figure 8. Spinflip (F) and nonflip (NF) cross sections for various gyromagnetic ratios. The first
graph shows m′ = +1, the second m′ = −1.

much further back. Tamm [54] calculated the wavefunction for the electron–monopole system
immediately following Dirac’s suggestion [9], while Banderet [55], following Fierz [56], was
the first to suggest a partial-wave expansion of the scattering amplitude for the system. The
first numerical work was carried out by Ford and Wheeler [57], while the comparison with the
classical theory can be found, for example, in [58, 59].

3.3. Relativistic calculation

A relativistic calculation of the scattering of a spin-1/2 Dirac particle by a heavy monopole
was given by Kazama et al [39]. They used Yang’s formulation of the vector potential
described above in section 3.1.1. In order to arrive at a result, they had to add an extra
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Figure 9. Spinflip and nonflip cross sections for m′ = 10, 20.

Figure 10. Relativistic helicity-flip and helicity-nonflip cross sections. Note for θ = π , helicity
nonflip corresponds to spin–flip, while helicity flip means spin–nonflip.

infinitesimal magnetic moment term, in order to prevent the charged particle from passing
through the monopole. The sign of this term would have measurable consequences in
polarization experiments. It does not, however, appear in the differential cross sections.
It also does not affect the helicity flip and helicity nonflip cross sections which are
shown in figure 10. The vanishing of the helicity nonflip cross section in the backward
direction precisely corresponds to the vanishing of the nonrelativistic spinflip cross section
there. The correspondence with the nonrelativistic calculation with spin seems quite
close.
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4. Non-Abelian monopoles

Although the rotationally symmetric, static solution of the Yang–Mills equations was found by
Wu and Yang in 1969 [12], it was only in 1974 when ’t Hooft and Polyakov included the Higgs
field in the theory that a stable monopole solution was found [13,14]. Dyonic configurations,
that is, ones with both magnetic and arbitrary electric charge, were found by Julia and Zee [16].
Here we discuss the unit monopole solution first obtained by Prasad and Sommerfield [60].
Referred to as BPS monopoles, which saturate the Bogomolny energy bound [61], they are
static solutions of the SU(2) theory

L = − 1

8π
tr(FµνF

µν) + tr(DµHDµH) − 1

4
λ
(
2 tr H 2 − v2

)2

= − 1

16π
Fµν

a Faµν +
1

2
(DµH)a(DµH)2 − λ

4
(HaHa − v2)2, (4.1)

where

DµH = ∂µH − eAµ × H, (4.2)

for an isotopic triplet Higgs field H . (We denote the coupling strength by e to avoid confusion
with the magnetic charge g.) This is the Georgi–Glashow model [62], in which the massive
vector boson has mass

mW =
√

4πev, (4.3a)

while the Higgs boson mass is

mH =
√

λv. (4.3b)

This model possesses nontrivial topological sectors. The topological charge is

k = − e

16π

∫
(dx)εijk tr(FjkDiH). (4.4)

In the limit of zero-Higgs coupling, λ = 0, where the Higgs boson mass vanishes, Bogomolny
showed that the classical energy of the configuration was bounded by the charge

E �
√

4πk
v

e
. (4.5)

The solution found by Prasad and Sommerfield achieves the lower bound on the energy,
E = √

4πkv/e, with unit charge, k = 1, and has the form

H = x
r

· σh(r), eA = σ × x
r2

f (r), (4.6a)

where with ξ = √
4πevr

h(r) = v

(
coth ξ − 1

ξ

)
, f (r) = 1 − ξ

sinh ξ
. (4.6b)

If we regard σa/2 as the isotopic generator, the forms of the isotopic components of the Higgs
field and vector potential are

Ha = 2h(r)
xa

r
, eAa

i = 2f (r)εaib

xb

r2
. (4.7)

These fields describe a monopole centred on the origin. Far away from that (arbitrary) point,
the behaviour of the fields is given by

r → ∞ : h(r) → v, f (r) → 1, (4.8)
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so we see that the vector potential (4.6a) indeed describes a monopole of twice the Dirac charge,
according to (3.114), because the spin is S = 1

2σ. However, this monopole has structure and is
not singular at the origin because both f and h vanish there. The energy of the configuration,
the mass of the monopole, is finite, as already noted,

E =
∫

(dr)∇2 tr H 2 = 1

2

∫
S∞

dS · ∇h2(r) =
√

4π
v2

ve
, (4.9)

which takes into account the relation between r and ξ , as claimed. In physical units this gives
a mass of this monopole solution of

M = mW

α
, (4.10)

in terms of the ‘fine structure’ constant of the gauge coupling, α = e2 in Gaussian units. If the
electroweak phase transition produced monopoles then we would expect them to have a mass
of about 10 TeV [63, 64]. There are serious doubts about this possibility [65–68] so it is far
more likely to expect such objects at the GUT scale. Magnetic monopole solutions for gauge
theories with arbitrary compact simple gauge groups as well as noninteracting multimonopole
solutions for these theories have been found [69].

In general, the classical ’t Hooft–Polyakov monopole mass in the Georgi–Glashow model
is with nonzero Higgs mass is

Mcl = mW

α
µ(z), z = mH

MW

. (4.11)

The function µ(0) = 1 and is less than 2 for large z. Quantum corrections to the classical
mass have been considered on the lattice [70].

We will not further discuss non-Abelian monopoles in this review because it is such
a vast subject, and there are many excellent reviews such as [71, 72] as well as textbook
discussions [73]. We merely note that asymptotically, an isolated non-Abelian monopole
looks just like a Dirac one, so that most of the experimental limits apply equally well to either
point-like or solitonic monopoles. Even the difficulties with the Dirac string, which have not
been resolved in the second quantized version, to which we now turn our attention, persist with
non-Abelian monopoles [74].

5. Quantum field theory

The quantum field theory of magnetic charge has been developed by many people, notably
Schwinger [33,75–78] and Zwanziger [79–82]. We should cite the review paper by Blagojević
and Senjanović [83], which cites earlier work by those authors. A recent formulation suitable
for eikonal calculations is given in [84] and will be described in section 5.3 and the following
sections. For another approach to the quantum field theory of magnetic monopoles see [85].

5.1. Lorentz invariance

Formal Lorentz invariance of the dual quantum electrodynamics system with sources consisting
of electric charges {ea} and magnetic charges {ga} was demonstrated provided the quantization
condition holds:

eagb − ebga = m′ =
{

n
2 , unsymmetric
n, symmetric

}
, n ∈ Z. (5.1)

‘Symmetric’ and ‘unsymmetric’ refer to the presence or absence of dual symmetry in the
solutions of Maxwell’s equations, reflecting the use of infinite or semi-infinite strings,
respectively.
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5.2. Quantum action

The electric and magnetic currents are the sources of the field strength and its dual (here, for
consistency, we denote by jµ, ∗jµ what we earlier called j

µ
e , j

µ
m , respectively):

∂νFµν = 4πjµ and ∂ν ∗Fµν = 4π∗jµ, (5.2)

where

∗Fµν = 1

2
εµνστF

στ , (5.3)

which imply the dual conservation of electric and magnetic currents, jµ and ∗jµ, respectively,

∂µjµ = 0, and ∂µ
∗jµ = 0. (5.4)

As we will detail below, the relativistic interaction between an electric and a magnetic current
is

W(j, ∗j) =
∫

(dx)(dx ′)(dx ′′)∗jµ(x)εµνστ ∂
νf σ

(
x − x ′)D+

(
x ′ − x ′′) j τ

(
x ′′) . (5.5)

Here the electric and magnetic currents are

jµ = eψ̄γµψ and ∗jµ = gχ̄γµχ, (5.6)

for example, for spin-1/2 particles. The photon propagator is denoted by D+(x −x ′) and fµ(x)

is the Dirac string function which satisfies the differential equation

∂µf µ(x) = 4πδ(x), (5.7)

the four-dimensional generalization of (3.17). A formal solution of this equation is given by

f µ(x) = 4πnµ (n · ∂)−1 δ(x), (5.8)

where nµ is an arbitrary constant vector. (Equation (3.125) results if n̂ = −ẑ, in which case
f(r, t) = f(r)δ(t).)

5.3. Field theory of magnetic charge

In order to facilitate the construction of the dual-QED formalism we recognize that the well-
known continuous global U(1) dual symmetry (2.2b) [33,75,78] implied by (5.2), (5.4), given
by (

j ′
∗j ′

)
=
(

cos θ sin θ

− sin θ cos θ

)(
j
∗j

)
, (5.9a)(

F ′
∗F ′

)
=
(

cos θ sin θ

− sin θ cos θ

)(
F
∗F

)
, (5.9b)

suggests the introduction of an auxiliary vector potential Bµ(x) dual to Aµ(x). In order to
satisfy the Maxwell and charge conservation equations, Dirac [86] modified the field strength
tensor according to

Fµν = ∂µAν − ∂νAµ + ∗Gµν, (5.10)

where now (5.2) gives rise to the consistency condition on Gµν(x) = −Gνµ(x)

∂ν ∗Fµν = −∂νGµν = 4π∗jµ. (5.11)

We then obtain the following inhomogeneous solution to the dual Maxwell’s equation (5.11)
for the tensor Gµν(x) in terms of the string function fµ and the magnetic current ∗jν :

Gµν(x) = 4π(n · ∂)−1[nµ
∗jν(x) − nν

∗jµ(x)]

=
∫

(dy)[fµ(x − y)∗jν(y) − fν(x − y)∗jµ(y)], (5.12)



Magnetic monopoles 1665

where use is made of (5.4), (5.7) and (5.8). A minimal generalization of the QED Lagrangian
including electron–monopole interactions reads

L = − 1

16π
FµνF

µν + ψ̄(iγ ∂ + eγA − mψ)ψ + χ̄(iγ ∂ − mχ)χ, (5.13)

where the coupling of the monopole field χ(x) to the electromagnetic field occurs through the
quadratic field strength term according to (5.10). We now rewrite the Lagrangian (5.13) to
display that interaction more clearly by introducing the auxiliary potential Bµ(x).

Variation of (5.13) with respect to the field variables, ψ , χ and Aµ, yields in addition to
the Maxwell equations for the field strength, Fµν , (5.2), where jµ(x) = eψ̄(x)γ µψ(x), the
equation of motion for the electron field

(iγ ∂ + eγA(x) − mψ)ψ(x) = 0 (5.14)

and the nonlocal equation of motion for the monopole field

(iγ ∂ − mχ)χ(x) − 1

8π

∫
(dy)∗Fµν(y)

δGµν(y)

δχ̄(x)
= 0 . (5.15)

(We regard Gµν(x) as dependent on χ̄ , χ but not Aµ. Thus, the dual Maxwell equation is
given by the subsidiary condition (5.11).) It is straightforward to see from the Dirac equation
for the monopole (5.15) and the construction (5.12) that introducing the auxiliary dual field
(which is a functional of Fµν and depends on the string function fµ),

Bµ(x) = − 1

4π

∫
(dy)f ν(x − y)∗Fµν(y) , (5.16)

results in the following Dirac equation for the monopole field

(iγ ∂ + gγB(x) − mχ)χ(x) = 0. (5.17)

Here we have chosen the string to satisfy the oddness condition (this is the ‘symmetric’ solution,
generalizing (3.23))

f µ(x) = −f µ(−x), (5.18)

which as we have seen is related to Schwinger’s integer quantization condition [44, 87]. Now
(5.14) and (5.17) display the dual symmetry expressed in Maxwell’s equations (5.2) and (5.4).
Noting that Bµ satisfies (this is equivalent to taking λm = 0 in (3.16b))∫

(dx ′)f µ(x − x ′)Bµ(x ′) = 0, (5.19)

we see that (5.16) is a gauge-fixed vector field [88, 89] defined in terms of the field strength
through an inversion formula (see section 5.4.1). In terms of these fields the ‘dual-potential’
action can be re-expressed in terms of the vector potential Aµ and field strength tensor Fµν

(where Bµ is the functional (5.16) of Fµν) in first-order formalism as

W =
∫

(dx)

{
− 1

8π
Fµν(x)(∂µAν(x) − ∂νAµ(x)) +

1

16π
Fµν(x)Fµν(x)

+ψ̄(x)(iγ ∂ + eγA(x) − mψ)ψ(x) + χ̄(x)(iγ ∂ + gγB(x) − mχ)χ(x)

}
(5.20a)

or in terms of dual variables

W =
∫

(dx)

{
− 1

8π

∗Fµν
(x)(∂µBν(x) − ∂νBµ(x)) +

1

16π

∗Fµν
(x)∗Fµν(x)

+ψ̄(x)(iγ ∂ + eγA(x) − mψ)ψ(x) + χ̄(x)(iγ ∂ + gγB(x) − mχ)χ(x)

}
.

(5.20b)
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In (5.20a), Aµ(x) and Fµν(x) are the independent field variables and Bµ(x) is given by (5.16),
while in (5.20b) the dual fields are the independent variables, in which case

Aµ(x) = − 1

4π

∫
(dy)f ν(x − y) Fµν(y) = 1

8π
εµνλσ

∫
(dy)f ν(x − y)∗Fλσ (y). (5.21)

(Note that (5.20b) may be obtained from form (5.20a) by inserting (5.21) into the former and
then identifying Bµ according to construction (5.16). In this way the sign of (1/16π)FµνF

µν =
−(1/16π)∗Fµν

∗Fµν is flipped.) Consequently, the field equation relating ∗Fµν and Bµ is

∗Fµν = ∂µBν − ∂νBµ −
∫

(dy)∗(fµ(x − y)jν(y) − fν(x − y)jµ(y)), (5.22)

which is simply obtained from (5.10) by making the duality transformation (2.2a).

5.4. Quantization of dual QED: Schwinger–Dyson equations

Although the various actions describing the interactions of point electric and magnetic poles
can be described in terms of a set of Feynman rules which one conventionally uses in
perturbative calculations, the large value of αg or eg renders them useless for this purpose.
In addition, calculations of physical processes using the perturbative approach from string-
dependent actions such as (5.20a) and (5.20b) have led only to string-dependent results [90].
In conjunction with a nonperturbative functional approach, however, the Feynman rules serve
to elucidate the electron–monopole interactions. We express these interactions in terms of the
‘dual-potential’ formalism as a quantum generalization of the relativistic classical theory of
section 5.3. We use the Schwinger action principle [91,92] to quantize the electron–monopole
system by solving the corresponding Schwinger–Dyson equations for the generating functional.
Using a functional Fourier transform of this generating functional in terms of a path integral
for the electron–monopole system, we rearrange the generating functional into a form that is
well-suited to the purpose of nonperturbative calculations.

5.4.1. Gauge symmetry. In order to construct the generating functional for Green’s functions
in the electron–monopole system we must restrict the gauge freedom resulting from the local
gauge invariance of the action (5.20a). The inversion formulae for Aµ and Bµ, (5.21) and
(5.16), respectively, might suggest using the technique of gauge-fixed fields [88, 93] as was
adopted in [90]. However, we use the technique of gauge fixing according to methods outlined
by Zumino and Bialynicki-Birula [94,95] and generalized by Zinn-Justin [96] in the language
of stochastic quantization.

The gauge fields are obtained in terms of the string and the gauge-invariant field strength,
by contracting the field strength (5.10), (5.12) with the Dirac string, f µ(x), in conjunction
with (5.7), yielding the following inversion formula for the equation of motion,

Aµ(x) = − 1

4π

∫
(dx ′)f ν(x − x ′)Fµν(x

′) + ∂µ�̃e(x), (5.23)

where we use the suggestive notation, �̃e(x);

�̃e(x) = 1

4π

∫
(dx ′)f ν(x − x ′)Aν

(
x ′) . (5.24)

In a similar manner, given the dual field strength (5.22), the dual vector potential takes the
following form (cf (5.16), (5.19)):

Bµ(x) = − 1

4π

∫
(dx ′)f ν(x − x ′)∗Fµν(x

′) + ∂µ�̃g, (5.25a)
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where

�̃g(x) = 1

4π

∫
(dx ′)f µ(x − x ′)Bµ(x ′). (5.25b)

It is evident that (5.23) transforms consistently under a gauge transformation

Aν(x) −→ Aν(x) + ∂ν�e(x), (5.26)

while in addition we note that the Lagrangian (5.20a) is invariant under the gauge
transformation,

ψ → exp[ie�e]ψ, Aµ → Aµ + ∂µ�e, (5.27a)

as is the dual action (5.20b) under

χ → exp[ig�g]χ, Bµ → Bµ + ∂µ�g. (5.27b)

Assuming the freedom to choose �̃e(x) = −�e(x), we bring the vector potential into gauge-
fixed form, coinciding with (5.21),

Aµ(x) = − 1

4π

∫
(dy)f ν(x − y) Fµν(y), (5.28)

where the gauge choice is equivalent to a string–gauge condition∫
(dx ′)f µ(x − x ′)Aµ(x ′) = 0. (5.29)

(This is the analogue of (5.19) and is equivalent to the gauge choice λe = 0, see (3.16a),
used in section 3.1.3. It is worth noting the similarity of this condition to the Schwinger–
Fock gauge in ordinary QED, x · A(x) = 0, which yields the gauge-fixed photon field
Aµ(x) = −xν

∫ 1
0 ds sFµν(xs).) Taking the divergence of (5.28) and using (5.2), the gauge-

fixed condition (5.28) can be written as

∂µAµ =
∫

(dy)f µ(x − y)jµ(y), (5.30)

which is nothing other than the gauge-fixed condition of Zwanziger in the two-potential
formalism [80].

More generally, the fact that a gauge function exists, such that�e(x) = −�̃e(x) (cf (5.24)),
implying that we have the freedom to consistently fix the gauge, is in fact not a trivial claim.
If this were not true, it would certainly derail the consistency of incorporating monopoles into
QED while utilizing the Dirac string formalism. On the contrary, the string–gauge condition
(5.29) is in fact a class of possible consistent gauge conditions characterized by the symbolic
operator function (5.8) depending on a unit vector nµ (which may be either spacelike or
timelike).

In order to quantize this system we must divide by the equivalence class of field values
defined by a gauge trajectory in field space; in this sense the gauge condition restricts the
vector potential to a hypersurface of field space which is embodied in the generalization
of (5.29)

1

4π

∫
(dx ′)f µ(x − x ′)Aµ(x ′) = �f

e (x), (5.31)

where �
f
e is any function here defining a unique gauge fixing hypersurface in field space.
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In a path integral formalism, we enforce the condition (5.31) by introducing a δ function,
symbolically written as

δ

(
1

4π
f µAµ − �f

e

)
=
∫

[dλe] exp

[
i
∫

(dx)λe(x)

×
(

1

4π

∫
(dx ′)f µ(x − x ′)Aµ(x ′) − �f

e (x)

)]
(5.32)

or by introducing a Gaussian functional integral

�

(
1

4π
f µAµ − �f

e

)
=
∫

[dλe] exp

[
− i

2

∫
(dx)(dx ′)λe(x)M(x, x ′)λe(x

′)

+ i
∫

(dx)λe(x)

(
1

4π

∫
(dx ′)f µ(x − x ′)Aµ(x ′) − �f

e (x)

)]
, (5.33)

where the symmetric matrix M(x, x ′) = κ−1δ(x − x ′) describes the spread of the integral∫
(dx ′)f µ(x − x ′)Aµ(x ′) about the gauge function, �

f
e (x). That is, we enforce the gauge

fixing condition (5.31) by adding the quadratic form appearing here to the action (5.20a) and
in turn eliminating λe by its ‘equation of motion’

λe(x) = κ

(
1

4π

∫
(dy) f µ(x − y)Aµ(y) − �f

e (x)

)
. (5.34)

Now the equations of motion (5.2) take the form

∂νFµν(x) −
∫

(dx ′)λe(x
′)fµ(x ′ − x) = 4πjµ(x), (5.35a)

∂ν ∗Fµν(x) −
∫

(dx ′)λg(x
′)fµ(x ′ − x) = 4π∗jµ(x), (5.35b)

where the second equation refers to a similar gauge fixing in the dual sector. Taking the
divergence of (5.35a) implies λe = 0 from (5.7) and (5.4), which consistently yields the gauge
condition (5.31). Using our freedom to make a transformation to the gauge-fixed condition
(5.28), �

f
e = 0, the equation of motion (5.35a) for the potential becomes[

− gµν∂
2 + ∂µ∂ν + 4πκnµ(n · ∂)−2nν

]
Aν(x) = 4πjµ(x) + εµνστ

4πnν

(n · ∂)
∂σ∗j τ (x), (5.36)

where we now have used the symbolic form of the string function (5.8). Even though (5.34)
now implies nµAµ = 0, we have retained the term proportional to nµnν in the kernel, scaled
by the arbitrary parameter κ ,

Kµν =
[

− gµν∂
2 + ∂µ∂ν + 4πκ nµ(n · ∂)−2nν

]
, (5.37)

so that Kµν possesses an inverse

Dµν(x) =
[
gµν − nµ∂ν + nν∂µ

(n · ∂)
+ n2

(
1 − 1

4πκ

(n · ∂)2∂2

n2

)
∂µ∂ν

(n · ∂)2

]
D+(x), (5.38)

that is,
∫
(dx ′)Kµα(x − x ′)Dαν(x ′ − x ′′) = gν

µδ(x − x ′′), where D+(x) is the massless scalar
propagator,

D+(x) = 1

−∂2 − iε
δ(x). (5.39)
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This in turn enables us to rewrite (5.36) as an integral equation, expressing the vector potential
in terms of the electron and monopole currents,

Aµ(x) = 4π

∫
(dx ′)Dµν(x − x ′)j ν(x ′)

+ενλστ

∫
(dx ′)(dx ′′)Dµν(x − x ′)fλ(x

′ − x ′′)∂ ′′
σ

∗jτ (x
′′). (5.40)

The steps for Bµ(x) are analogous.

5.4.2. Vacuum persistence amplitude and the path integral. Given the gauge-fixed but string-
dependent action, we are prepared to quantize this theory of dual QED. Quantization using a
path integral formulation of such a string-dependent action is by no means straightforward;
therefore, we will develop the generating functional making use of a functional approach.
Using the quantum action principle (cf [91,92]) we write the generating functional for Green’s
functions (or the vacuum persistence amplitude) in the presence of external sources K,

Z(K) = 〈0+|0−〉K, (5.41)

for the electron–monopole system. Schwinger’s action principle states that under an arbitrary
variation

δ〈0+|0−〉K = i〈0+|δW(K)|0−〉K, (5.42)

where W(K) is the action given in (5.20a) externally driven by the sources, K, which for the
present case are given by the set {J, ∗J, η̄, η, ξ̄ , ξ}:

W(K) = W +
∫

(dx){JµAµ + ∗JµBµ + η̄ψ + ψ̄η + ξ̄χ + χ̄ξ}, (5.43)

η (η̄), ξ (ξ̄ ) being the sources for electrons (positrons) and monopoles (antimonopoles),
respectively. The one-point functions are then given by

δ

iδJµ(x)
log Z(K) = 〈0+|Aµ(x)|0−〉K

〈0+|0−〉K ,
δ

iδ∗Jµ(x)
log Z(K) = 〈0+|Bµ(x)|0−〉K

〈0+|0−〉K ,

δ

iδη̄(x)
log Z(K) = 〈0+|ψ(x)|0−〉K

〈0+|0−〉K ,
δ

iδξ̄ (x)
log Z(K) = 〈0+|χ(x)|0−〉K

〈0+|0−〉K . (5.44)

Using (5.44) we can write down derivatives with respect to the charges (here we redefine the
electric and magnetic currents j → ej and ∗j → g∗j ) in terms of functional derivatives [97–99]
with respect to the external sources:

∂

∂e
〈0+|0−〉K = i

〈
0+

∣∣∣∣
∫

(dx)jµ(x)Aµ(x)

∣∣∣∣0−

〉K
= −i

∫
(dx)

(
δ

δÃµ(x)

δ

δJµ(x)

)
〈0+|0−〉K,

∂

∂g
〈0+|0−〉K = i

〈
0+

∣∣∣∣
∫

(dx)∗jµ(x)Bµ(x)

∣∣∣∣0−

〉K
= −i

∫
(dx)

(
δ

δB̃µ(x)

δ

δ∗Jµ(x)

)
〈0+|0−〉K.

(5.45)

Here we have introduced an effective source to bring down the electron and monopole currents,

δ

δÃµ

≡ 1

i

δ

δη
γ µ δ

δη̄
,

δ

δB̃µ

≡ 1

i

δ

δξ
γ µ δ

δξ̄
. (5.46)
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These first-order differential equations can be integrated with the result

〈0+|0−〉K = exp

[
− ig

∫
(dx)

(
δ

δB̃ν(x)

δ

δ∗J ν(x)

)

−ie
∫

(dx)

(
δ

δÃµ(x)

δ

δJµ(x)

)]
〈0+|0−〉K

0 , (5.47)

where 〈0+|0−〉K
0 is the vacuum amplitude in the absence of interactions. By construction, the

vacuum amplitude and Green’s functions for the coupled problem are determined by functional
derivatives with respect to the external sources K of the uncoupled vacuum amplitude, where
〈0+|0−〉K

0 is the product of the separate amplitudes for the quantized electromagnetic and Dirac
fields since they constitute completely independent systems in the absence of coupling, that is,

〈0+|0−〉K
0 = 〈0+|0−〉(η̄,η,ξ̄ ,ξ)

0 〈0+|0−〉(J,∗J )
0 . (5.48)

First we consider 〈0+|0−〉K
0 as a function of J and ∗J

δ

iδJµ(x)
〈0+|0−〉K

0 = 〈0+|Aµ(x)|0−〉K
0 . (5.49)

Taking the matrix element of the integral equation (5.40) but now with external sources rather
than dynamical currents we find

〈0+|Aµ(x)|0−〉K
0 =

∫
(dx ′)Dµν(x − x ′)

(
4πJ ν(x ′) + ενλστ

∫
(dx ′′)fλ(x

′ − x ′′)∂ ′′
σ

∗Jτ (x
′′)
)

×〈0+|0−〉K
0 . (5.50)

Using (5.36) we arrive at the equivalent gauge-fixed functional equation,[
− gµν∂

2 + ∂µ∂ν + 4πκnµ(n · ∂)−2nν

]
δ

iδJ ν(x)
〈0+|0−〉K

0

=
(

4πJµ(x) + εµνστ

∫
(dx ′)f ν(x − x ′)∂ ′σ ∗J τ (x ′)

)
〈0+|0−〉K

0 , (5.51)

which is subject to the gauge condition

nν δ

δJ ν
〈0+|0−〉K

0 = 0 (5.52a)

or ∫
(dx ′)f ν(x − x ′)

δ

δJ ν(x ′)
〈0+|0−〉K

0 = 0. (5.52b)

In turn, from (5.47) we obtain the full functional equation for 〈0+|0−〉K:[
− gµν∂

2 + ∂µ∂ν + 4πκnµ(n · ∂)−2nν

]
δ

iδJ ν(x)
〈0+|0−〉K

= exp

[
−ig

∫
(dy)

(
δ

δB̃α(y)

δ

δ∗J α(y)

)
− ie

∫
(dy)

(
δ

δÃα(y)

δ

δJ α(y)

)]

×
(

4πJµ(x) + εµνστ

∫
(dx ′)f ν(x − x ′)∂ ′σ ∗J τ (x ′)

)
〈0+|0−〉K

0 . (5.53)

Commuting the external currents to the left of the exponential on the right side of (5.53) and
using (5.44), we are led to the Schwinger–Dyson equation for the vacuum amplitude, where
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we have restored the meaning of the functional derivatives with respect to Ã, B̃ given in (5.46),{[
− gµν∂

2 + ∂µ∂ν + 4πκnµ(n · ∂)−2nν

]
δ

iδJν(x)

−4πe
δ

iδη(x)
γµ

δ

iδη̄(x)
− εµνστ

∫
(dx ′)f ν(x − x ′)∂ ′σ g

δ

iδξ(x ′)
γ τ δ

iδξ̄ (x ′)

}
〈0+|0−〉K

=
(

4πJµ(x) + εµνστ

∫
(dx ′)f ν(x − x ′)∂ ′σ ∗J τ (x ′)

)
〈0+|0−〉K. (5.54)

In an analogous manner, using
δ

iδ∗Jµ(x)
〈0+|0−〉K

0 = 〈0+|Bµ(x)|0−〉K
0 , (5.55)

we obtain the functional equation (which is consistent with duality){[
− gµν∂

2 + ∂µ∂ν + 4πκnµ(n · ∂)−2nν

]
δ

iδ∗Jν(x)

−4πg
δ

iδξ(x)
γµ

δ

iδξ̄ (x)
+ εµνστ

∫
(dx ′)f ν(x − x ′)∂ ′σ e

δ

iδη(x ′)
γ τ δ

iδη̄(x ′)

}
〈0+|0−〉K

=
(

4π∗Jµ(x) − εµνστ

∫
(dx ′)f ν(x − x ′)∂ ′σ J τ (x ′)

)
〈0+|0−〉K, (5.56)

which is subject to the gauge condition∫
(dx ′)f µ(x − x ′)

δ

δ∗Jµ(x ′)
〈0+|0−〉K = 0. (5.57)

In a straightforward manner we obtain the functional Dirac equations{
iγ ∂ + eγ µ δ

iδJµ(x)
− mψ

}
δ

iδη̄(x)
〈0+|0−〉K = −η(x)〈0+|0−〉K, (5.58a){

iγ ∂ + gγ µ δ

iδ∗Jµ(x)
− mχ

}
δ

iδξ̄ (x)
〈0+|0−〉K = −ξ(x)〈0+|0−〉K. (5.58b)

In order to obtain a generating functional for Green’s functions we must solve the set of
equations (5.54), (5.56), (5.58a), (5.58b) subject to (5.52b) and (5.57) for 〈0+|0−〉J . In the
absence of interactions, we can immediately integrate the Schwinger–Dyson equations; in
particular, (5.56) then integrates to

〈0+|0−〉J,∗J
0 = N (J ) exp

{
2π i

∫
(dx)(dx ′)∗Jµ(x)Dµν(x − x ′)∗Jν(x

′)

+iεµνστ

∫
(dx)(dx ′)(dx ′′)∗Jβ(x)Dβµ(x − x ′)∂ ′νf σ (x ′ − x ′′)J τ (x ′′)

}
. (5.59)

We determine N , which depends only on J , by inserting (5.59) into (5.54) or (5.51):

ln N (J ) = 2π i
∫

(dx)(dx ′)Jµ(x)Dµν(x − x ′)Jν(x
′), (5.60)

resulting in the generating functional for the photonic sector

〈0+|0−〉(J,∗J )
0 = exp

{
2π i

∫
(dx)(dx ′)Jµ(x)Dµν(x − x ′)Jν(x

′)

+2π i
∫

(dx)(dx ′)∗Jµ(x)Dµν(x − x ′)∗J ν(x
′)

−4π i
∫

(dx)(dx ′)Jµ(x)D̃µν(x − x ′)∗J ν(x
′′)
}
, (5.61)
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where we use the shorthand notation for the ‘dual propagator’ that couples the magnetic to the
electric charge

D̃µν(x − x ′) = 1

4π
εµνστ

∫
(dx ′′)D+(x − x ′′)∂ ′′σ f τ (x ′′ − x ′). (5.62)

The term coupling electric and magnetic sources has the same form as in (5.5); here, we have
replaced Dκµ → gκµD+ because of the appearance of the Levi-Cività symbol in (5.62). (Of
course, we may replace Dµν → gµνD+ throughout (5.61) because the external sources are
conserved, ∂µJµ = ∂∗

µJµ = 0.) In an even more straightforward manner (5.58a), (5.58b)
integrate to

〈0+|0−〉(η̄,η,ξ̄ ,ξ)

0 = exp

{
i
∫

(dx)(dx ′)[η̄(x)Gψ(x − x ′)η(x ′) + ξ̄ (x)Gχ(x − x ′)ξ(x ′)]
}

,

(5.63)

where Gψ and Gχ are the free propagators for the electrically and magnetically charged
fermions, respectively,

Gψ(x) = 1

−iγ ∂ + mψ

δ(x), Gχ(x) = 1

−iγ ∂ + mχ

δ(x). (5.64)

In the presence of interactions the coupled equations (5.54), (5.56), (5.58a), (5.58b) are solved
by substituting (5.61) and (5.63) into (5.47). The resulting generating function is

Z(K) = exp

(
−ie

∫
(dx)

δ

δη(x)
γ µ δ

iδJµ(x)

δ

δη̄(x)

)

× exp

(
−ig

∫
(dy)

δ

δξ(y)
γ ν δ

iδ∗J ν(y)

δ

δξ̄ (y)

)
Z0(K). (5.65)

5.4.3. Nonperturbative generating functional. Due to the fact that any expansion in αg or
eg is not practically useful we recast the generating functional (5.65) into a functional form
better suited to a nonperturbative calculation of the four-point Green’s function.

First we utilize the well-known Gaussian combinatoric relation [100, 101]; moving the
exponentials containing the interaction vertices in terms of functional derivatives with respect
to fermion sources past the free fermion propagators, we obtain (coordinate labels are now
suppressed)

Z(K) = exp

{
i
∫

η̄

(
Gψ

[
1 − eγ · δ

iδJ
Gψ

]−1
)

η + Tr ln

(
1 − eγ · δ

iδJ
Gψ

)}

× exp

{
i
∫

ξ̄

(
Gχ

[
1 − gγ · δ

iδ∗J
Gχ

]−1
)

ξ + Tr ln

(
1 − gγ · δ

iδ∗J
Gχ

)}

×Z0(J,∗J ). (5.66)

Now, we re-express (5.61), the noninteracting part of the generating functional of the photonic
action, Z0(J,∗J ), using a functional Fourier transform,

Z0(J,∗J ) =
∫

[dA][dB]Z̃0(A, B) exp

[
i
∫

(J · A + ∗J · B)

]
, (5.67a)

or

Z0(J, ∗J ) =
∫

[dA][dB] exp(i�0[A, B, J, ∗J ]), (5.67b)
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where (using a matrix notation for integration over coordinates)

�0[A, B, J, ∗J ] =
∫

(J · A + ∗J · B) − 1

8π

∫
AµKµνA

ν +
1

8π

∫
B ′µ�̃−1

µνB
′ν, (5.68)

with the abbreviation

B ′
µ(x) = Bµ(x) − 1

4π
εµνστ

∫
(dx ′)∂νf σ (x − x ′)Aτ (x ′) (5.69)

and the string-dependent ‘correlator’

�̃µν(x − x ′) = 1

(4π)2

∫
(dx ′′){f σ (x − x ′′)fσ (x ′′ − x ′)gµν − fµ(x − x ′′)fν(x

′′ − x ′)}.
(5.70)

Using (5.68) we recast (5.66) as

Z(K) =
∫

[dA][dB]F1(A)F2(B) exp(i�0[A, B, J, ∗J ]). (5.71)

Here the fermion functionals F1 and F2 are obtained by the replacements δ/(iδJ ) → A,
δ/(iδ∗J ) → B:

F1(A) = exp

{
Tr ln(1 − eγ · AGψ) + i

∫
η̄(Gψ [1 − eγ · AGψ ]−1)η

}
, (5.72a)

F2(B) = exp

{
Tr ln(1 − gγ · BGχ) + i

∫
ξ̄ (Gχ [1 − gγ · BGχ ]−1)ξ

}
. (5.72b)

We perform a change in variables by shifting about the stationary configuration of the effective
action, �0[A, B, J, ∗J ]:

Aµ(x) = Āµ(x) + φµ(x), B ′
µ(x) = B̄ ′

µ(x) + φ′
µ(x), (5.73)

where Ā and B̄ are given by the solutions to
δ�0(A, B, J, ∗J )

δAτ
= 0,

δ�0(A, B, J, ∗J )

δBτ
= 0, (5.74)

namely (most easily seen by regarding A and B ′ as independent variables),

Āµ(x) =
∫

(dx ′)Dµκ(x − x ′)
(

4πJ κ(x ′) − εκνστ

∫
(dx ′′)∂ ′

νfσ (x ′ − x ′′)∗Jτ (x
′′)
)

, (5.75a)

B̄µ(x) =
∫

(dx ′)Dµκ(x − x ′)
(

4π∗J κ(x ′) + εκνστ

∫
(dx ′′)∂ ′

νfσ (x ′ − x ′′)Jτ (x
′′)
)

, (5.75b)

reflecting the form of (5.40) and its dual. Note that the solutions (5.75a), (5.75b) respect the dual
symmetry, which is not however manifested in the form of the effective action (5.68). Using
the properties of Volterra expansions for functionals and performing the resulting quadratic
integration over φ(x) and φ′(x) we obtain a rearrangement of the generating functional for the
monopole-electron system that is well suited to nonperturbative calculations:

Z(K)

Z0(J, ∗J )
= exp

{
2π i

∫
(dx)(dx ′)

(
δ

δĀµ(x)
Dµν(x − x ′)

δ

δĀν(x ′)

+
δ

δB̄µ(x)
Dµν(x − x ′)

δ

δB̄ν(x ′)

)
− 4π i

∫
(dx)(dx ′)

δ

δĀµ(x)
D̃µν

(
x − x ′) δ

δB̄ν(x ′)

}

× exp

{
i
∫

(dx)(dx ′)η̄(x)G(x, x ′|Ā)η(x ′) + i
∫

(dx)(dx ′)ξ̄ (x)G(x, x ′|B̄)ξ(x ′)
}

× exp

{
−
∫ e

0
de′ Tr γ ĀG(x, x|Ā) −

∫ g

0
dg′ Tr γ B̄G(x, x|B̄)

}
. (5.76)
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Here the two-point fermion Green’s functions G(x1, y1|Ā), and G(x2, y2|B̄) in the background
of the stationary photon field Ā, B̄ are given by

G(x, x ′|Ā) = 〈x|(γp + mψ − eγ Ā)−1|x ′〉, (5.77a)

G(x, x ′|B̄) = 〈x|(γp + mχ − g γ B̄)−1|x ′〉, (5.77b)

where the trace includes integration over spacetime. This result is equivalent to the functional
Fourier transform given in (5.67a) including the fermionic monopole-electron system:

Z(K) =
∫

[dA][dB] det(−iγDA + mψ) det(−iγDB + mχ)

× exp

{
i
∫

(dx)(dx ′)
(

η̄(x)G(x, x ′|A)η(x ′) + ξ̄ (x)G(x, x ′|B)ξ(x ′)
)}

× exp

{
− i

8π

∫
(AµKµνA

ν − B ′µ�̃−1
µνB

′ν) + i
∫

(J · A + ∗J · B)

}
, (5.78)

where we have integrated over the fermion degrees of freedom.
Finally, from our knowledge of the manner in which the electric and magnetic charge

couple to photons through Maxwell’s equations we can immediately write the generalization
of (5.76) for dyons, the different species of which are labelled by the index a:

Z(K) = exp

{
2π i

∫
(dx)(dx ′)J µ(x)Dµν(x − x ′)J ν(x ′)

}

× exp

{
2π i

∫
(dx)(dx ′)

δ

δĀµ(x)
Dµν(x − x ′)

δ

δĀν(x ′)

}

× exp

{
i
∑

a

∫
(dx)(dx ′)ζ̄a(x)Ga(x, x ′|Āa)ζa(x

′)
}

× exp

{
−
∑

a

∫ 1

0
dq Tr γ ĀaGa(x, x|qĀa)

}
, (5.79)

where Aa = eaA + gaB, ζa is the source for the dyon of species a, and a matrix notation is
adopted,

J µ(x) =
(

J (x)
∗J (x)

)
,

δ

δĀµ(x)
=
(

δ/δĀµ(x)

δ/δB̄µ(x)

)
, (5.80)

and

Dµν(x − x ′) =
(

Dµν(x − x ′) −D̃µν(x − x ′)
D̃µν(x − x ′) Dµν(x − x ′)

)
. (5.81)

5.4.4. High energy scattering cross section. In this section we provide evidence of the string
independence of the dyon–dyon and charge–monopole (the latter being a special case of the
former) scattering cross section. We will use the generating functional (5.79) developed in
the last section to calculate the scattering cross section nonperturbatively. We are not able in
general to demonstrate the phenomenological string invariance of the scattering cross section.
However, it appears that in much the same manner as the Coulomb phase arises as a soft
effect in high energy charge scattering, the string dependence arises from the exchange of soft
photons, and so in an appropriate eikonal approximation, the string-dependence appears only
as an unobservable phase.
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Figure 11. Dyon–dyon scattering amplitudes in the quenched approximation.

To calculate the dyon–dyon scattering cross section we obtain the four-point Green’s
function for this process from (5.79)

G(x1, y1; x2, y2) = δ

iδζ̄1(x1)

δ

iδζ1(y1)

δ

iδζ̄2(x2)

δ

iδζ2(y2)
Z(K)

∣∣∣∣
K=0

. (5.82)

The subscripts on the sources refer to the two different dyons.
Here we confront our calculational limits; these are not too dissimilar from those

encountered in diffractive scattering or in the strong-coupling regime of QCD [102–106]. As a
first step in analysing the string dependence of the scattering amplitudes, we study high-energy
forward scattering processes where soft photon contributions dominate. In diagrammatic
language, in this kinematic regime it is customary to restrict attention to that subclass in which
there are no closed fermion loops and the photons are exchanged between fermions [102]. In the
context of Schwinger–Dyson equations this amounts to quenched or ladder approximation (see
figure 11). In this approximation the linkage operators, Ł, connect two fermion propagators
via photon exchange, as we read off from (5.79):

eŁ12 = exp

{
4π i

∫
(dx)(dx ′)

δ

δĀµ

1 (x)
Dµν(x − x ′)

δ

δĀν
2(x

′)

}
. (5.83)

In this approximation (5.82) takes the form

G(x1, y1; x2, y2) = −eŁ12G1(x1, y1|Ā1)G2(x2, y2|Ā2)

∣∣∣
Ā=B̄=0

, (5.84)

where we express the two-point function using the proper-time parameter representation of an
ordered exponential

Ga(x, y|Āa) = i
∫ ∞

0
dξ e−iξ(ma−iγ ∂) exp

{
i
∫ ξ

0
dξ ′eξ ′γ ∂γ Āae−ξ ′γ ∂

}
+

δ(x − y), (5.85)

where ‘+’ denotes path ordering in ξ ′. The 12 subscripts in Ł12 emphasize that only photon
lines that link the two fermion lines are being considered.

Adapting techniques outlined in [107,108] we consider the connected form of (5.84). We
use the connected two-point function and the identities

eŁ = 1 +
∫ 1

0
da eaŁŁ (5.86)

and
δ

δĀµ(x)
G(y, z|Ā) = eG(y, x|Ā)γ µG(x, z|Ā). (5.87)
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Using (5.84) and (5.85) one is straightforwardly led to the following representation of the
four-point Green function,

G(x1, y1; x2, y2) = −4π i
∫ 1

0
da

∫
(dz1)(dz2)(q1 · q2 Dµν(z1 − z2) − q1 × q2D̃µν(z1 − z2))

×eaL12G1(x1, z1|Ā1)γ
µG1(z1, y1|Ā1)G2(x2, z2|Ā2)γ

νG2(z2, y2|Ā2)

∣∣∣∣∣
Ā=B̄=0

, (5.88)

where the charge combinations invariant under duality transformations are

q1 · q2 = e1e2 + g1g2 = q, q1 × q2 = e1g2 − g1e2 = −m′h̄c = −κc. (5.89)

In order to account for the soft nonperturbative effects of the interaction between electric and
magnetic charges we consider the limit in which the momentum exchanged by the photons
is small compared with the mass of the fermions. This affords a substantial simplification in
evaluating the path-ordered exponential in (5.85); in conjunction with the assumption of small
momentum transfer compared with the incident and outgoing momenta, q/p(1,2) � 1, this
amounts to the Bloch and Nordsieck [109] or eikonal approximation (see [110–116]; for more
modern applications in diffractive and strong coupling QCD processes see [102–106]). In this
approximation (5.85) becomes

Ga(x, y|Ā) ≈ i
∫ ∞

0
dξ e−iξmδ

(
x − y − ξ

p

m

)
exp

{
i
∫ ξ

0
dξ ′ p

m
· Ā

(
x − ξ ′ p

m

)}
. (5.90)

With this simplification each propagator in (5.84) can be written as an exponential of a linear
function of the gauge field. Performing mass shell amputation on each external coordinate and
taking the Fourier transform of (5.88) we obtain the scattering amplitude, T (p1, p

′
1; p2, p

′
2):

T (p1, p
′
1; p2, p

′
2)

−4π i
=
∫ 1

0
da eaŁ12

∫
(dz1)(dz2)(q1 · q2 Dµν(z1 − z2) − q1 × q2D̃µν(z1 − z2))

×
∫

(dx1)e
−ip1x1 ū(p1)(m1 + v1 · p1)G1(x1, z1|Ā1)γ

µ

×
∫

(dy1)e
ip′

1y1G1(z1, y1|Ā1)(m1 + v′
1 · p′

1)u(p′
1)

×
∫

(dx2)e
−ix2p2 ū(p2)(m2 + v2 · p2)G2(x2, z2|Ā2)γ

ν

×
∫

(dy2)e
ip′

2y2G2(z2, y2|Ā2)(m2 + v′
2 · p′

2)u(p′
2). (5.91)

Substituting (5.90) into (5.91), we simplify this to

T (p1, p
′
1; p2, p

′
2)

−4π i
≈
∫ 1

0
da

∫
(dz1)(dz2)e

−iz1(p1−p′
1)e−iz2(p2−p′

2)ū(p′
1)γ

µu(p1)ū(p′
2)γ

νu(p2)

×(q1 · q2 Dµν(z1 − z2) − q1 × q2D̃µν(z1 − z2))e
aŁ12

× exp

[
i
∫ ∞

0
dα1{p1 · Ā1(z1 + α1p1) + p′

1 · Ā1(z1 − α1p
′
1)}
]

× exp

[
i
∫ ∞

0
dα2{p2 · Ā2(z2 + α2p2) + p′

2 · Ā2(z2 − α2p
′
2)}
]

. (5.92)

Choosing the incoming momenta to be in the z direction, in the centre of the momentum
frame, p

µ

1 = (E1, 0, 0, p), p
µ

2 = (E2, 0, 0, −p), invoking the approximation of small recoil
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and passing the linkage operator through the exponentials containing the photon field, we find
from (5.92)

T (p1, p
′
1; p2, p

′
2)

−4π i
≈
∫ 1

0
da

∫
(dz1)(dz2)e

−iz1(p1−p′
1)e−iz2(p2−p′

2)ū(p′
1)γµu(p1)ῡ(p′

2)γνυ(p2)

×(q1 · q2 Dµν(z1 − z2) − q1 × q2D̃
µν(z1 − z2))e

ia�(p1,p2;z1−z2), (5.93)

where the ‘eikonal phase’ integral is

�(p1, p2; z1 − z2)

= 4πpκ
1 pλ

2

∫ ∞

−∞
dα1 dα2(q1 · q2 Dκλ − q1 × q2D̃κλ)(z1 − z2 + α1p1 − α2p2). (5.94)

We transform to the centre of momentum coordinates, by decomposing the relative coordinate
accordingly,

(z1 − z2)
µ = x

µ

⊥ − τ1p
µ

1 + τ2p
µ

2 , (5.95)

where the Jacobian of the transformation is

J = p
√

s (5.96)

and s = −(p1 + p2)
2 is the square of the centre of mass energy. Here we use the symmetric

infinite string function, as discussed in section 3, which has the momentum–space form,

f µ(k) = 4π
nµ

2i

(
1

n · k − iε
+

1

n · k + iε

)
. (5.97)

Inserting the momentum-space representation of the propagator and recalling (5.62), we cast
(5.94) into the form

�(p1, p2; x) ≈ 4πpκ
1 pλ

2

∫ ∞

−∞
dα1 dα2

∫
(dk)

(2π)4

ei k·(x+α1p1−α2p2)

k2 + µ2

×
[

q1 · q2 gκλ − q1 × q2εκλστ k
σ nτ

2

(
1

n · k − iε
+

1

n · k + iε

)]
, (5.98)

where we have introduced the standard infrared photon-mass regulator, µ2. The delta functions
that result from performing the integrations over the parameters α1 and α2 in (5.98) in the
eikonal phase suggests the momentum decomposition

kµ = k
µ

⊥ + λ1e
µ

1 + λ2e
µ

2 , where λ1 = p2 · k and λ2 = p1 · k, (5.99)

and the four-vector basis is given by

e
µ

1 = −1√
s

(
1, 0, 0,

p0
1

p

)
and e

µ

2 = −1√
s

(
1, 0, 0, −p0

2

p

)
, (5.100)

which have the following properties, in terms of the masses m1 and m2 of the two dyons,

e1 · e1 = 1

s

m2
1

p2
, e2 · e2 = 1

s

m2
2

p2
and e1 · e2 = 1

s

p1 · p2

p2
. (5.101)

The corresponding measure is

(dk) = J−1d2k⊥dλ1dλ2, (5.102)

in terms of the Jacobian in (5.96). Using the definition of the Møller amplitude, M(s, t), given
by removing the momentum-conserving delta function,

T (p1, p
′
1; p2, p

′
2) = (2π)4δ(4)(P − P ′)M(s, t), (5.103)
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we put (5.93) into the form

M(s, t) ≈ −i
∫ 1

0
da

∫
d2x⊥e−iq⊥ ·x⊥ ū(p′

1)γ
µu(p1)ū(p′

2)γ
νu(p2)Iµνeia�(p1,p2;x), (5.104)

where

Iµν = 4π

∫
d2k⊥
(2π)2

dλ1

2π

dλ2

2π

eik⊥·x⊥2πδ(λ1)2πδ(λ2)

(k2
⊥ + µ2 + (1/sp2)(λ2

1M
2
1 + λ2

2M
2
2 + 2λ1λ2p1 · p2))

×
[

q1 · q2 gµν − q1 × q2εµνστ k
σ nτ

2

(
1

n · k − iε
+

1

n · k + iε

)]
. (5.105)

Here P = p1 + p2 and P ′ = p′
1 + p′

2, and q = p1 − p′
1 is the momentum transfer. The factor

exp(iτ1p1 · q − iτ2p2 · q) = exp

[
i
1

2
q2(τ1 + τ2)

]
(5.106)

has been omitted because it is unity in the eikonal limit, and, correspondingly, we have carried
out the integrals on τ1 and τ2. The eikonal phase (5.98) now takes a very similar form

�(p1, p2; x) = pκ
1 pλ

2

p
√

s
Iκλ. (5.107)

Choosing a spacelike string in order to have a local interaction in momentum space,
nµ = (0, n̂), integrating over the coordinates λ1, λ2 and introducing ‘proper-time’ parameter
representations of the propagators, we reduce (5.107) to

�(p1, p2; x) = 4π

p
√

s

∫
d2k

(2π)2
eik·x

∫ ∞

0
ds e−s(k2+µ2)

×
{

q1 · q2 p1 · p2 − q1 × q2p
µ

1 pν
2εµνστ

nσ

2i

∂

∂nτ

(∫ ∞

0

dt

it
eit (n·k+iε) −

∫ 0

−∞

dt

it
eit (n·k−iε)

)}

= 2q1 · q2
p1 · p2

p
√

s
K0(µ|x|) − q1 × q2ε3jkn

j ∂

∂nk

∫
dt

t
K0(µ|(x + tn)|), (5.108)

in terms of modified Bessel functions, where we have dropped the subscript ⊥.
We perform the parameter integral over t in the limit of small photon mass µ2:

− 1

2
ẑ · (n̂ × x)

[∫ ∞

0
−
∫ 0

−∞

]
dt e−ε|t |

(t + n̂ · x)2 + x2 − (n̂ · x)2
= arctan

[
n̂ · x

ẑ · (n̂ × x)

]
, (5.109)

so the phase is

�(p1, p2; x) ≈ 2

{
q1 · q2 ln (µ̃ |x|) − q1 × q2 arctan

[
n̂ · x

ẑ · (n̂ × x)

]}
. (5.110)

In this limit we have used the asymptotic behaviour of the modified Bessel function

K0(x) ∼ − ln

(
eγ x

2

)
, x → 0, (5.111)

where γ = 0.577 . . . is Euler’s constant and we have defined µ̃ = eγ µ/ 2. Similarly, (5.104)
becomes

M(s, t) ≈ −2i
∫ 1

0
da

∫
d2x e−iq·xū(p′

1)γ
µu(p1)ū(p′

2)γ
νu(p2)

×
{

gµνq1 · q2K0(µ|x|) − εµνστ q1 × q2n
τ ∂

∂nσ

1

2

∫
dt

t
K0(µ|(x + t n̂)|)

}

×eia�(p1,p2;x). (5.112)
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Although in the eikonal limit, no spin–flip processes occur, it is, as always, easier to calculate
the helicity amplitudes, of which there is only one in this case. In the high-energy limit,
p0 � m, the Dirac spinor in the helicity basis is

uσ (p) =
√

p0

2m
(1 + iγ5σ)vσ , (5.113)

where the vσ may be thought of as two-component spinors satisfying γ 0vσ = vσ . They are
further eigenstates of the helicity operator σ · p̂ with eigenvalue σ :

v†
+(p̂

′
) =

(
cos

θ

2
, sin

θ

2

)
, v

†
−(p̂′

) =
(

− sin
θ

2
, cos

θ

2

)
, (5.114a)

v+(p̂) =
(

1
0

)
, v−(p̂) =

(
0
1

)
. (5.114b)

We employ the definition

γ5 = γ 0γ 1γ 2γ 3 (5.115)

and consequently γ 0γ = iγ 5σ, where σij = εijkσ
k . We then easily find upon integrating over

the parameter a that the spin–nonflip part of (5.112) becomes (θ → 0)

M(s, t) = s

2m1m2

{∫
d2x e−iq·xei�(p1,p2;x) − (2π)2 δ2(q)

}
. (5.116)

Now note that the arctangent function in (5.110) is discontinuous when the xy component of
n̂ and x lie in the same direction. We require that the eikonal phase factor ei� be continuous,
which leads to the Schwinger quantization condition (3.2):

q1 × q2 = −m′, (5.117)

where m′ is an integer. Now using the integral form for the Bessel function of order ν

iνJν(t) =
∫ 2π

0

dφ

2π
ei(t cos φ−νφ) , (5.118)

we find the dyon–dyon scattering amplitude (5.116) to be (also see (7.13) below)

M(s, t) = πs

m1m2
e−i2m′ψ

∫ ∞

0
dx x J2m′(qx)ei2α̃ ln(µ̃x), (5.119)

where α̃ = q1 · q2 and ψ is the angle between q⊥ and n̂⊥. The integral over x is just a ratio of
gamma functions,

1

µ̃

∫ ∞

0
dx (µ̃x)1+2iα̃J2m′(qx) = 1

2µ̃2

(
4µ̃2

q2

)iα̃+1
�(1 + m′ + iα̃)

�(m′ − iα̃)
. (5.120)

Then (5.119) becomes

M(s, t) ≈ s

m1m2

2π

q2
(m′ − iα̃)e−i2m′ψ

(
4µ̃2

q2

)iα̃
�(1 + m′ + iα̃)

�(1 + m′ − iα̃)
. (5.121)

This result is almost identical in structure to the nonrelativistic form of the scattering amplitude
for the Coulomb potential, the result of which is recovered by setting m′ = 0. (See, for
example, [117].) Following the standard convention [118] we calculate the spin-averaged
cross section for dyon–dyon scattering in the high energy limit,

dσ

dt
= 4π

(q1 · q2)
2 + (q1 × q2)

2

t2
. (5.122)
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While the Lagrangian is string-dependent, because of the charge quantization condition,
the cross section, (5.122), is string-independent. Not surprisingly, this coincides with the
Rutherford formula (2.15), (3.135).

For the case of charge–monopole scattering e1 = g2 = 0, this result, of course, coincides
with that found by Urrutia [119], which is also string-independent as a consequence of
(3.1). We should also mention the slightly earlier work of Ore, demonstrating the Lorentz
invariance of charge–monopole scattering [120]. This is to be contrasted with ad hoc
prescriptions that average over string directions or eliminate its dependence by simply dropping
string-dependent terms because they cannot contribute to any gauge-invariant quantities
(cf [90]).

5.5. Conclusion

In this section we have responded to the challenge of Schwinger [33] to construct a realistic
theory of relativistic magnetic charges. He sketched such a development in source theory
language, but restricted his consideration to classical point particles, explicitly leaving the
details to the reader. Urrutia applied this skeletal formulation in the eikonal limit [119], as
already suggested by Schwinger.

We believe that we have given a complete formulation, in modern quantum field
theoretic language, of an interacting electron–monopole or dyon–dyon system. The resulting
Schwinger–Dyson equations, although to some extent implicit in the work of Schwinger and
others, were given in [84] for the first time.

The challenge remaining is to apply these equations to the calculation of monopole
and dyon processes. Perturbation theory is useless, not only because of the strength of
the coupling but more essentially because the graphs are fatally string- or gauge-dependent.
The most obvious nonperturbative technique for transcending these limitations in scattering
processes lies in the high energy regime where the eikonal approximation is applicable; in
that limit, our formalism generalizes the lowest-order result of Urrutia and charts the way to
include systematic corrections. More problematic is the treatment of monopole production
processes—we must defer that discussion to subsequent publications. In addition we have
also detailed how the Dirac string dependence disappears from physical quantities. It is
by no means a result of string averaging or a result of dropping string-dependent terms
as in [90]. In fact, it is a result of summing the soft contributions to the dyon–dyon or
charge–monopole process. There are good reasons to believe that inclusion of hard scattering
contributions will not spoil this consistency. At the level of the eikonal approximation and its
corrections one might suspect the occurrence of a factorization of hard string-independent
and soft string-dependent contributions in a manner similar to that argued in strong-
coupling QCD.

It is also of interest to investigate other nonperturbative methods of calculation in order to
demonstrate gauge covariance of Green’s functions and scattering amplitudes in both electron–
monopole and dyon–dyon scattering and in Drell–Yan production processes. In addition
there is a formalism employed in [121–123] based on Fradkin’s [124] Green’s function
representation, which includes approximate vertex and self-energy polarization corrections
using nonperturbative techniques, which we are adapting to the magnetic charge domain. (For
a first pedagogical example of this formalism see [125].) We hope in the future to apply
the techniques and results found here to the Drell–Yan production mechanism, for example,
and obtain phenomenologically relevant estimates for the laboratory production of monopole–
antimonopole pairs.
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6. Renormalization

As discussed in section 5, Lorentz invariance (rotational invariance for the nonrelativistic
theory) is satisfied by the dual electrodynamics of electric and magnetic charges interacting
provided the quantization condition is obeyed. But is the theory renormalizable? This question
was addressed by Schwinger in 1966 [76, 77]. His view at the time was that renormalization
described the connection between the particle and field level description of reality. At both
these levels consistency demanded that the quantization condition must hold, so that if integer
quantization is appropriate,

e0g0

h̄c
= n0,

eg

h̄c
= n, (6.1)

but that the integers n and n0 need not be the same. The question is whether electric and
magnetic charges are renormalized by the same or different factors. He argued that the former
was the case because charge renormalization refers to the electromagnetic field, not its sources.
That is,

e

e0
= g

g0
= C < 1; (6.2)

so in view of the charge quantization condition (6.1) the quantum numbers n0 and n are not
the same:

C2 = n

n0
. (6.3)

The discreteness of renormalization of the dual theory is thus manifest from this point of view.
This is at odds with the modern understanding of renormalization as a continuous evolution

of parameters, such as the charge, with change in energy scale. It would seem that this view
of the renormalization group may be difficult to maintain without a perturbative framework:
that is, at any energy scale Q, we might expect

e(Q)g(Q) = n. (6.4)

For this reason Laperashvili and co-workers [126–130], following Zwanziger [80, 82], argue
that (6.4) holds at all scales or in terms of the bare and renormalized quantization numbers,
n = n0. That is, the electric and magnetic charges are renormalized by exactly inverse factors.
In terms of the fine structure constants, for the minimal Dirac pole strength, m′ = 1/2, this
says

∗α(Q)α(Q) = 1

4
. (6.5)

Laperashvili, Nielsen and collaborators have exploited the small window which this seems to
permit for perturbative calculations, where neither α nor ∗α is bigger than unity.

However, at best there is room for serious doubt about the essential validity of this
procedure. In ordinary quantum electrodynamics charge renormalization can be regarded as
arising entirely from vacuum polarization. Presumably, this is still the case in dual QED.
Using lowest order perturbative graphs to describe vacuum polarization does violence to
the charge quantization condition; moreover, higher order graphs involving both electrically
and magnetically charged particles necessarily bring in the Dirac string, which as we have
repeatedly emphasized can only disappear in a nonperturbative treatment. Such is as yet
lacking in our analysis of renormalization in dual QED.
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7. Eikonal approximation

It is envisaged that if monopoles are sufficiently light, they would be produced by a Drell–Yan
type of process occurring in pp collisions at the Tevatron. Two photon production channels
may also be important. The difficulty is to make a believable estimate of the elementary
process qq → γ ∗ → MM , where q stands for quark and M for magnetic monopole. It is not
known how to calculate such a process using perturbation theory; indeed, perturbation theory
is inapplicable to monopole processes because of the quantization condition (3.1). It is only
because of that consistency condition that the Dirac string, for example, disappears from the
result.

Only formally has it been shown that the quantum field theory of electric and magnetic
charges is independent of the string orientation or, more generally, is gauge- and Lorentz-
invariant [33,75–82]. It has not yet proved possible to develop generally consistent schemes
for calculating processes involving real or virtual magnetically charged particles. This is partly
because a sufficiently general field theoretic formulation has not yet been given; a small step
in remedying this defect was given in [84], reviewed in section 5. However, the nonrelativistic
scattering of magnetically charged particles is well understood, as described in section 3. Thus,
it should not be surprising that an eikonal approximation gives a string-independent result for
electron–monopole scattering provided condition (3.1) is satisfied. In section 5 we described
the eikonal approximation in terms of the full field-theoretic formulation. Since that formalism
is rather elaborate, we give here a simplified pedagogical treatment, as described in [131] and
first worked out by Urrutia [119].

The interaction between electric (Jµ) and magnetic (∗Jµ) currents is given by (5.5) or

W(eg) = −εµνστ

∫
(dx)(dx ′)(dx ′′)J µ(x)∂σD+(x − x ′)f τ (x ′ − x ′′)∗J ν(x ′′). (7.1)

Here D+ is the usual photon propagator, and the arbitrary ‘string’ function fµ(x − x ′) satisfies
(5.7) or

∂µf µ(x − x ′) = 4πδ(x − x ′). (7.2)

It turns out to be convenient for this calculation to choose a symmetrical string, which satisfies
(5.18) or

f µ(x) = −f µ(−x). (7.3)

In the following we choose a string lying along the straight line nµ, in which case the function
may be written as a Fourier transform (5.97) or

fµ(x) = 4π
nµ

2i

∫
(dk)

(2π)4
eikx

(
1

n · k − iε
+

1

n · k + iε

)
. (7.4)

In the high-energy, low-momentum-transfer regime, the scattering amplitude between
electron and monopole is obtained from (7.1) by inserting the classical currents,

Jµ(x) = e

∫ ∞

−∞
dλ

p
µ

2

m
δ
(
x − p2

m
λ
)

, (7.5a)

∗Jµ(x) = g

∫ ∞

−∞
dλ′ p

µ

1

M
δ

(
x + b − p′

2

M
λ′
)

, (7.5b)

where m and M are the masses of the electron and monopole, respectively. Let us choose a
coordinate system such that the incident ultrarelativistic momenta of the two particles have
spatial components along the z axis:

p1 = (p, 0, 0, p), p2 = (p, 0, 0, −p), (7.6a)
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and the impact parameter lies in the xy plane:

b = (0, b, 0). (7.6b)

Apart from kinematical factors, the scattering amplitude is simply the transverse Fourier
transform of the eikonal phase, which is the content of (5.116),

I (q) =
∫

d2b e−ib·q(eiχ − 1), (7.7)

where χ is simply W(eg) with the classical currents substituted and q is the momentum transfer.
First we calculate χ ; it is immediately seen to be, if nµ has no time component,

χ = 2πeg

∫
d2k⊥
(2π)2

ẑ · (n̂ × k⊥)

k2
⊥ − iε

eik⊥ ·b
(

1

n̂ · k⊥ − iε
+

1

n̂ · k⊥ + iε

)
, (7.8)

where k⊥ is the component of the photon momentum perpendicular to the z axis. From this
expression we see that the result is independent of the angle n̂ makes with the z axis. We next
use proper-time representations for the denominators in (7.8),

1

k2
⊥

=
∫ ∞

0
ds e−sk2

⊥ , (7.9a)

1

n̂ · k⊥ − iε
+

1

n̂ · k⊥ + iε
= 1

i

[∫ ∞

0
dλ −

∫ 0

−∞
dλ

]
eiλn̂·k⊥e−|λ|ε . (7.9b)

We then complete the square in the exponential and perform the Gaussian integration to obtain

χ = egẑ · (n̂ × b)

∫ ∞

−∞
dλ

1

(λ + b · n̂)2 + b2 − (b · n̂)2
(7.10a)

or

χ = 2eg arctan

(
n̂ · b

ẑ · (b × n̂)

)
, (7.10b)

which is contained in 5.110. Because eiχ must be continuous when n̂⊥ and b lie in the same
direction, we must have the Schwinger quantization condition for an infinite string,

eg = m′, (7.11)

where m′ is an integer.
To carry out the integration in (7.7), choose b to make an angle φ with q⊥ and the projection

of n̂ in the xy plane to make an angle ψ with q⊥; then

χ = 2eg(φ − ψ − π/2). (7.12)

To avoid the appearance of a Bessel function, as occurs in (5.119), we first integrate over
b = |b| and then over φ:

I (q) =
∫ 2π

0
dφ

∫ ∞

0
b db e−ibq(cos φ−iε)e2im′(φ−ψ−π/2)

= 4

i

e−2im′(ψ+π/2)

q2

∮
C

dz z2m′−1

(z + 1/z − iε)2
= −4πm′

q2
e−2im′ψ, (7.13)

where C is a unit circle about the origin and where again the quantization condition (7.11) has
been used. Squaring this and putting in the kinematical factors we obtain Urrutia’s result [119]
(cf (5.122)),

dσ

dt
= 4π(eg)2 1

t2
, t = q2, (7.14)

which is exactly the same as the nonrelativistic, small-angle result found, for example, in (2.15).
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8. Energy loss by magnetic monopoles traversing matter

The essence of the energy loss mechanism of charged particles travelling through matter can
be described by classical electrodynamics. By a simple duality analysis, therefore, one should
be able to describe the rate at which a particle carrying magnetic charge loses energy when
it passes through matter. The details of this argument can be found in the last two chapters
of [27]. It is based on the fundamental analyticity requirements of the electrical permittivity,
demanded by causality, the Kramers–Kronig relations. In terms of positive spectral functions
p(ω) and q(ω), which satisfy∫ ∞

0
dω′p(ω′) = 1,

∫ ∞

0
dω′q(ω′) = 1, (8.1)

the dielectric function obeys

ε(ω) = 1 + ω2
p

∫ ∞

0
dω′ p(ω′)

ω′2 − (ω + iε)2
, (8.2a)

1

ε(ω)
= 1 − ω2

p

∫ ∞

0
dω′ q(ω′)

ω′2 − (ω + iε)2
. (8.2b)

Here ωp is the plasma frequency,

ωp = 4πne2

m
, (8.3)

in terms of the electron mass m and density of free electrons n.
Using (8.2b), in chapter 52 of [27] we derive the following formula for the energy loss

−dE when a charged particle (charge Ze) having velocity v travels a distance dz:

− dE

dz
= 1

2

ω2
p(Ze)2

v2

[
ln

K2v2

ω2
e (1 − (v2/c2))

− v2

c2
−
∫ v2/c2

1/ε(0)

d

(
v′2

c2

)
ν2

v′

ω2
p

]
, (8.4)

where the last integral should be omitted if v/c < 1/
√

ε(0). Here∫ ∞

0
dω q(ω) ln ω2 = ln ω2

e (8.5)

and νv is given by the root of 1 − v2ε(iν)/c2, that is,

ω2
p

∫ ∞

0
dω′ q(ω′)

ω′2 + ν2
v

= 1 − v2

c2
. (8.6)

Further, K is a boundary between low momentum transfer events and high momentum ones,
such as δ-rays. For a more complete theory, and extensive comparison with experiment, the
reader is referred to ( [132], Passage of particles through matter).

In parallel with the above derivation, we can use (8.2a) to derive the corresponding formula
for the energy loss rate by a magnetically charged particle:

− dE

dz
= 1

2

ω2
pg2

c2

[
ln

K2v2

ω2
m(1 − (v2/c2))

− 1 −
∫ ε(0)

c2/v2
d

(
c2

v′2

)
ν2

v′

ω2
p

]
, (8.7)

where the latter integral only appears if v/c > 1/
√

ε(0). Here∫ ∞

0
dω p(ω) ln ω2 ≡ ln ω2

m. (8.8)

We note that the predominant change from the energy loss for electrically charged particles
lies in the replacement

Ze

v
→ g

c
, (8.9)

as earlier claimed in (2.16), provided ω2
e ≈ ω2

m.
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This result should be only regarded as qualitative. For our experimental analysis, we will
use the extensive results of Ahlen and Kinoshita [133, 134]. As we discussed in section 3.3
Kazama et al [39] have obtained the relativistic differential scattering cross section for an
electron moving in the magnetic field of a fixed magnetic pole. Ahlen then used this cross
section to obtain the following expression for monopole stopping power:

− dE

dx
= 4π

c2

g2e2

me

Ne

(
ln

2mec
2β2γ 2

I
+

1

2
K(|n|) − 1

2
δ − 1

2
− B(|n|)

)
, (8.10)

where Ne is the number density of electrons, I is the mean ionization energy, K(|n|) = 0.406
(0.346) is the Kazama, Yang and Goldhaber correction for magnetic charge 2|m′| = n = 1
(n � 2), respectively, δ is the usual density correction and B(|n|) = 0.248 (0.672, 1.022,
1.685) is the Bloch correction for n = 1 (n = 2, 3, 6), respectively [132]. (Of course, one
must divide by the density to get dx in g cm−2.) This formula is only good for velocities
β = v/c > 0.1. For velocities β < 0.01, we use (60) of [133] as an approximation for all
materials:

− dE

dx
= (45 Gev cm−1)n2β, (8.11)

which is linear in β in this region. The two dE/dx velocity regions are joined by an empirically
fitted polynomial in the region of β = 0.01–0.1 in order to have a smooth function of β. For the
elemental and composite materials found in the D0 and CDF detectors, we show the resulting
dE/dx curves we used in figure 12. (See [135].)

9. Binding

So far in this review, we have concentrated on the scattering of monopoles with charged
particles or on dyon–dyon scattering. Now we turn to the question of the binding of these
particles. Our discussion will be largely, although not exclusively, based on the nonrelativistic
description.

If q = e1e2 + g1g2 < 0 and m′ = −(e1g2 − e2g1)/h̄c, HNR (3.126) gives binding

ENj = −µ

2
q2

[
N +

1

2
+ ((j + 1/2)2 − m′2)1/2

]−2

, (9.1)

where N is a principal quantum number. We will not further address the issue of dyons
[136–141], which for the correct sign of the electric charge will always bind electrically to
nuclei. Monopoles will not bind this way; rather, a magnetic moment coupling as in (3.137)
is required; for example, for spin-1/2,

HS = − eh̄

2µc
γσ · B, γ = 1 + κ = g

2
. (9.2)

(γ = 1 or g = 2 is the ‘normal’ value.)
Suppose monopoles are produced in a collision at the Tevatron, for example; they travel

through the detector, losing energy in a well-known manner (see, e.g. [27], the results of which
are summarized in section 8), presumably ranging out and eventually binding to matter in the
detector (Be, Al, Pb, for example). The purpose of this section is to review the theory of the
binding of magnetic charges to matter.

We consider the binding of a monopole of magnetic charge g to a nucleus of charge Ze,
mass M = Amp and magnetic moment

µ = e

mpc
γ S, (9.3)
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Figure 12. Energy loss of a magnetic monopole in various materials. These dE/dx curves are for
a magnetic charge value of 2|m′| = n = 1; apart from the correction terms K(|n|) and B(|n|), we
multiply by n2 for larger magnetic charge values.

S being the spin of the nucleus. (We will assume here that the monopole mass � M, whose
restriction could be easily removed.) The charge quantization condition is given by (3.1).
Because the nuclear charge is Ze, the relevant angular momentum quantum number is (m′

being an integer or an integer plus 1/2)

l = |m′|Z. (9.4)

9.1. Nonrelativistic binding for S = 1/2

In this section we follow the early work of Malkus [142] and the more recent papers of Bracci
co-workers [143–146]. (There are also the results given in [147], but this seems to contain
errors.)

The neutron (Z = 0) is a special case. Binding will occur in the lowest angular momentum
state, J = 1/2, if

|γ | >
3

4|m′| . (9.5)

Since γn = −1.91, this condition is satisfied for all m′.
In general, it is convenient to define a reduced gyromagnetic ratio,

γ̂ = A

Z
γ, κ̂ = γ̂ − 1. (9.6)
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Table 1. Weakly bound states of nuclei to a magnetic monopole. The angular momentum quantum
number J of the lowest bound state is indicated. In Notes, NR means nonrelativistic calculations
and R relativistic calculations; hc indicates an additional hard core interaction is assumed, while FF
signifies the use of a form factor. IM represents induced magnetization, the additional interaction
employed for the relativistic spin-1 calculation. We use |m′| = 1/2 except for the deuteron, where
|m′| = 1 is required for binding.

Nucleus Spin γ γ̂ J Eb Notes References

n 1
2 −1.91 1

2 350 keV NR,hc [147]
1
1H 1

2 2.79 2.79 l − 1
2 = 0 15.1 keV NR,hc [143]

320 keV NR,hc [147]
50–1000 keV NR,FF [148]
263 keV R [149, 150]

2
1H 1 0.857 1.71 l − 1 = 0 (|m′| = 1) 130/λ keV R,IM [152, 153]
3
2He 1

2 −2.13 −3.20 l + 1
2 = 3

2 13.4 keV NR,hc [143]
27
13Al 5

2 3.63 7.56 l − 5
2 = 4 2.6 MeV NR,FF [149, 150]

27
13Al 5

2 3.63 7.56 l − 5
2 = 4 560 keV NR,hc [154]

113
48 Cd 1

2 −0.62 −1.46 l + 1
2 = 49

2 6.3 keV NR,hc [143]

This expresses the magnetic moment in terms of the mass and charge of the nucleus. Binding
will occur in the special lowest angular momentum state J = l − 1

2 if

γ̂ > 1 +
1

4l
. (9.7)

Thus, binding can occur here only if the anomalous magnetic moment κ̂ > 1/4l. The proton,
with κ = 1.79, will bind.

Binding can occur in higher angular momentum states J if and only if

|κ̂| > κc = 1

l

∣∣J 2 + J − l2
∣∣ . (9.8)

For example, for J = l + 1
2 , κc = 2 + 3/4l, and for J = l + 3

2 , κc = 4 + 15/4l.
Thus 3

2He, which is spin 1/2, will bind in the first excited angular momentum state because
κ̂ = −4.2.

Unfortunately, to calculate the binding energy, one must regulate the potential at r = 0.
The results shown in table 1 assume a hard core.

9.2. Nonrelativistic binding for general S

The reference here is [148]. The assumption made here is that l � S. (There are only 3
exceptions, apparently: 2H, 8Li and 10B.)

Binding in the lowest angular momentum state J = l − S is given by the same criterion
(9.7) as in spin 1/2. Binding in the next state, with J = l − S + 1, occurs if λ± > 1

4 ,
where

λ± =
(

S − 1

2

)
γ̂

S
l − 2l − 1 ±

√
(1 + l)2 + (2S − 1 − l)

γ̂

S
l +

1

4
l2

(
γ̂

S

)2

. (9.9)

Of course, the previous result for S = 1/2 is recovered. S = 1 is a special case: then λ− is
always negative, while λ+ > 1

4 if γ̂ > γc, where

γc = 3

4l

(3 + 16l + 16l2)

9 + 4l
. (9.10)
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For higher spins, both λ± can exceed 1/4:

λ+ >
1

4
for γ̂ > γc−, (9.11a)

λ− >
1

4
for γ̂ > γc+, (9.11b)

where for S = 3
2

(γc)∓ = 3

4l
(6 + 4l ∓

√
33 + 32l). (9.12)

For 9
4Be, for which γ̂ = −2.66, we cannot have binding because 3 > γc− > 1.557,

3 < γc+ < 8.943, where the ranges come from considering different values of 2|m′| from
1 to ∞. For S = 5

2 ,

(γc)∓ = 36 + 28l ∓
√

1161 + 1296l + 64l2

12l
. (9.13)

So 27
13Al will bind in either of these states, or the lowest angular momentum state, because

γ̂ = 7.56 and 1.67 > γc− > 1.374, 1.67 < γc+ < 4.216.

9.3. Relativistic spin-1/2

Kazama and Yang treated the Dirac equation [36]. Also see [149, 150] and [136–141].
In addition to the bound states found nonrelativistically, deeply bound states, with

Ebinding = M, are also found. These states always exist for J � l + 1/2. For J = l − 1/2,
these (relativistic) E = 0 bound states exist only if κ > 0. Thus (modulo the question of form
factors) Kazama and Yang [36] expect that electrons can bind to monopoles. (We suspect that
one must take the existence of these deeply bound states with a fair degree of skepticism. Also
see [151].)

As expected, for J = l − 1/2 we have weakly bound states only for κ > 1/4l, which is
the same as the nonrelativistic condition (9.7) and for J � l + 1/2, only if |κ̂| > κc, where κc

is given in (9.8).

9.4. Relativistic spin-1

Olsen and co-workers considered this situation [152, 153].
In this case, no bound states exist, unless an additional interaction is introduced (this is

similar to what happens nonrelativistically because of the bad behaviour of the Hamiltonian at
the origin). Bound states are found if an ‘induced magnetization’ interaction (quadratic in the
magnetic field) is introduced. Binding is then found for the lowest angular momentum state
J = l − 1 again if κ̂ > 1/4l. For the higher angular momentum states, the situation is more
complicated:

• for J = l: bound states require l � 16 and

• for J � l + 1: bound states require J (J + 1) − l2 � 25.

But these results are probably highly dependent on the form of the additional interaction. The
binding energies found are inversely proportional to the strength λ of this extra interaction.
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9.5. Remarks on binding

Clearly, this summary indicates that the theory of monopole binding to nuclear magnetic dipole
moments is rather primitive. The angular momentum criteria for binding is straightforward;
but in general (except for relativistic spin 1/2) additional interactions have to be inserted by
hand to regulate the potential at r = 0 (see also [155]). The results for binding energies clearly
are very sensitive to the nature of that additional interaction. It cannot even be certain that
binding occurs in the allowed states. In fact, however, it seems nearly certain that monopoles
will bind to all nuclei, even, for example, Be, because the magnetic field in the vicinity of the
monopole is so strong that the monopole will disrupt the nucleus and will bind to the nuclear,
or even the subnuclear, constituents.

9.6. Binding of monopole-nucleus complex to material lattice

Now the question arises: can the magnetic field in the detector extract the monopole from
the nucleus that binds it? And if not, is the bound complex of nucleus and monopole rigidly
attached to the crystalline lattice of the material? To answer the former question we regard it
as a simple tunnelling situation. The decay rate is estimated by the WKB formula

� ∼ 1

a
exp

[
−2

h̄

∫ b

a

dr
√

2M(V − E)

]
, (9.14a)

where the potential is crudely that due to the dipole interaction and the external magnetic field,

V = −µg

r2
− gBr, (9.14b)

M is the nuclear mass � monopole mass and the inner and outer turning points, a and b are
the zeros of E − V . Provided the following equality holds,

(−E)3 � g3µB2, (9.15)

which should be very well satisfied; since the right-hand side is about 10−19|m′|3 MeV3, for
the CDF field of B = 1.5 T, we can write the decay rate as

� ∼ |m′|−1/21023s−1 exp

[
− 4

√
2

3 · 137

(−E

me

)3/2
B0

|m′|B A1/2

(
mp

me

)1/2
]

, (9.16)

where the characteristic field, defined by eB0 = m2
e , is 4 × 109 T. If we put in B = 1.5 T,

and A = 27, −E = 2.6 MeV, appropriate for 27
13Al, we have for the exponent, for m′ = 1/2,

−2 × 1011, corresponding to a rather long time! To get a 10 yr lifetime, the binding energy
would have to be only of the order of 1 eV. Monopoles bound with kilovolt or more energies
will stay around forever.

Then the issue is whether the entire Al atom–monopole complex can be extracted with the
1.5 T magnetic field present in CDF. The answer seems to be unequivocally no. The point is
that the atoms are rigidly bound in a lattice, with no nearby site into which they can jump. A
major disruption of the lattice would be required to dislodge the atoms, which would probably
require kilovolts of energy. Some such disruption was made by the monopole when it came
to rest and was bound in the material, but that disruption would be very unlikely to be in the
direction of the accelerating magnetic field. Again, a simple Boltzmann argument shows that
any effective binding slightly bigger than 1 eV will result in monopole trapping ‘forever’. This
argument applies equally well to binding of monopoles in ferromagnets. If monopoles bind
strongly to nuclei there, they will not be extracted by 5 T fields, contrary to the arguments
of Goto et al [156]. The corresponding limits on monopoles from ferromagnetic samples of
Carrigan et al [157] are suspect.
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10. Searches for magnetic monopoles

With the advent of ‘more unified’ non-Abelian theories, classical composite monopole
solutions were discovered, as briefly discussed in section 4. The mass of these monopoles
would be of the order of the relevant gauge-symmetry breaking scale, which for grand unified
theories is of order 1016 GeV or higher. But there are models where the electroweak symmetry
breaking can give rise to monopoles of mass ∼ 10 TeV [63–66]. Even the latter are not
yet accessible to accelerator experiments, so limits on heavy monopoles depend either on
cosmological considerations (see for example [158]) or detection of cosmologically produced
(relic) monopoles impinging upon the earth or moon [24,25,159–164]. Since the revival
of interest in monopoles in the 1970s, there have been two well-known announcements of
their discovery: that of Price et al [165], who found a cosmic ray track etched in a plastic
detector, and that of Cabrera [160], who reported a single event in an induction loop. The
former interpretation was immediately refuted by Alvarez [166], while the latter has never
been duplicated, so is presumed spurious.

However, a priori, there is no reason that Dirac/Schwinger monopoles or dyons of arbitrary
mass might not exist: in this respect, it is important to set limits below the 1 TeV scale.

10.1. Direct searches

In this review we will concentrate on recently obtained limits, since periodic reviews of the
status of magnetic monopole searches have been published [167, 168]. Before 2000, the
best previous direct limit on magnetic monopoles was that obtained at Fermilab by Bertani
et al [169] who obtained cross section limits of 2 × 10−34 cm2 for monopole masses below
850 GeV. As we shall see below, the Oklahoma experiment [21], while not extending to as
high masses, gives cross section limits some two orders of magnitude smaller. The recent
CDF experiment [170] sets a three order of magnitude improvement over [169]. (In contrast
to [167,168], we call all of these experiments ‘direct,’ whether they are searching for previously
produced monopoles trapped in material or the ionization and radiation produced by monopoles
passing through a detector.) As noted in section 9.6 there have been experiments to search
for monopoles by extracting them from matter with strong magnetic fields [157, 172]; as
remarked there, it is doubtful that such an experiment would succeed, since the binding energy
of a monopole to the lattice is probably at least in the kilo-electron-volt range, while the energy
acquired by a Dirac monopole in a 100 kG field over an atomic distance is only 20 eV.

Cosmologically produced monopoles are commonly assumed to arise from a GUT (grand
unified theory) where a grand unified group such as SU(5) breaks down into the standard
model group SU(3)×SU(2)×U(1). Barring premature unification due to, say, large extra
dimensions, the mass of such a monopole is expected to be of the order 1016 GeV, so they
are incapable of being produced in accelerators. However, since in the early universe at least
one monopole should be produced per causal domain, too many monopoles would have been
produced [171, 173, 174] and would come into conflict with the Parker bound, which states
that cosmic fields would be quenched if the density of magnetic monopoles is too high [175].
This is one of the problems solved by inflation.

Various experiments have been conducted to look for cosmic monopoles. An interesting
limit comes from the Rubakov–Callan mechanism for monopole catalysis of proton decay
[176, 177],

M + p → M + e+ + π0, (10.1)

where MACRO [178] found a limit on the flux of 3–8×10−16 cm−2 s−1 sr−1. However,
MACRO’s best limit [179], based on scintillation counters, limited streamer tubes and nuclear
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track detectors, gives a much better limit of 1.4×10−16 cm−2 s−1 sr−1 for monopole velocities
in the range 4 × 10−5 < β < 1, roughly a factor of two improvement over previous limits,
and well below the Parker bound of ∼10−15 cm−2 s−1 sr−1. Even smaller limits depend on the
mechanism by which a monopole would produce a track in ancient mica [180,181]. One should
note that lower mass monopoles, with masses of order 1010 GeV, arising from intermediate
stages of symmetry breaking below the GUT scale, would not catalyze proton decay [182,183],
but the more stringent MACRO limits still apply.

We will discuss the three recent direct search limits in sections 11–13.

10.2. Indirect searches

In the above, and in the following sections, we discussed direct searches, where the monopoles
are searched for as free particles. The indirect searches that have been proposed and carried
out rely on effects attributable to the virtual existence of monopoles. De Rújula in 1995 [184]
proposed looking at the three-photon decay of the Z boson, where the process proceeds through
a virtual monopole loop, as shown in figure 13. If we use his formula for the branching ratio
for the Z → 3γ process, compared with the current experimental upper limit [185] for the
branching ratio of 10−5, we can rule out monopole masses lower than about 400 GeV, rather
than the 600 GeV quoted by De Rújula. Similarly, Ginzburg and Panfil in 1982 [186] and more
recently Ginzburg and Schiller in 1999 [187, 188] considered the production of two photons
with high transverse momenta by the collision of two photons produced either from e+e− or
qq̄ collisions. Again the final photons are produced through a virtual monopole loop. Based
on this theoretical scheme, an experimental limit was given by the D0 collaboration [189],
which sets the following bounds on the monopole mass M:

M

2|m′| >




610 GeV for S = 0
870 GeV for S = 1/2
1580 GeV for S = 1

, (10.2)

where S is the spin of the monopole, and m′ = eg is the magnetic charge quantization number.
It is worth noting that a lower mass limit of 120 GeV for a Dirac monopole has been set by

Graf et al [190], based on the monopole contribution to the vacuum polarization correction to
the muon anomalous magnetic moment. (Actually, we believe that the correct limit, obtained
from the well-known textbook formula for the g-factor correction due to a massive Dirac
particle is 60 GeV.)

10.2.1. Difficulty with indirect limits. The indirect limits mentioned above rely on the
Feynman graph shown in figure 13. If the particle in the loop is an ordinary electrically
charged electron, this process is well known. If, further, the photons involved are of very low
momentum compared with mass of the electron, then the result may be simply derived from the
well-known Euler–Heisenberg Lagrangian [191–193] which for a spin-1/2 charged-particle
loop in the presence of weak homogeneous electric and magnetic fields is

L = − 1

16π
F 2 +

α2

360

1

m4

1

(4π)2
[4(F 2)2 + 7(F ∗F)2], (10.3)

where m is the mass of the particle in the loop. The Lagrangian for a spin-0 and spin-1 charged
particle in the loop is given by similar formulae, which are derived in [193,194] and (implicitly)
in [195–197], respectively.

Given this homogeneous-field effective Lagrangian, it is a simple matter to derive the
cross section for the γ γ → γ γ process in the low energy limit. (These results can, of
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Figure 13. The light-by-light scattering graph for either an electron or a monopole loop.

course, be directly calculated from the corresponding one-loop Feynman graph with on-mass-
shell photons, see [194, 198].) Explicit results for the differential cross section are given in
textbooks:

dσ

d

= 139

32400π2
α4 ω6

m8
(3 + cos2 θ)2, (10.4)

and the total cross section for a spin-1/2 charged particle in the loop is

σ = 973

10125π
α4 ω6

m8
, ω/m � 1, s = 4ω2. (10.5)

The numerical coefficients in the total cross section are 0.00187, 0.0306 and 3.50 for spin 0,
spin 1/2, and spin 1 particles in the loop, respectively.

How is this applicable to photon scattering through a monopole loop? This would
seem impossible because of the existence of the string, which renders perturbation theory
meaningless. Of course, no one has attempted a calculation of the ‘box’ diagram with the
monopole interaction. Rather, De Rújula and Ginzburg (explicitly or implicitly) appeal to
duality, that is, the dual symmetry (2.2a) that the introduction of magnetic charge brings to
Maxwell’s equations:

E → B, B → −E, (10.6)

and similarly for charges and currents. Thus the argument is that for low energy photon
processes it suffices to compute the fermion loop graph in the presence of zero-energy photons,
that is, in the presence of static, constant fields. Since the Euler–Heisenberg Lagrangian is
invariant under the duality substitution on the fields alone, this means we obtain the low energy
cross section σγγ→γ γ through the monopole loop from the equation for the QED cross section
by the substitution e → g, or

α → αg = 137m′2, 2|m′| = 1, 2, 3, . . . . (10.7)

It is critical to emphasize that the Euler–Heisenberg Lagrangian is an effective Lagrangian
for calculations at the one fermion loop level for low energy, i.e. ω/m � 1. However, it
becomes unreliable if radiative corrections are large. (The same has been noted in another
context by Bordag and co-workers [199, 200].) For example, the internal radiative correction
to the box diagram have been computed by Ritus [201] and by Reuter and co-workers [202,203]
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in QED. In the O(α2) term in the expansion of the EH Lagrangian (10.3), the coefficients of
the (F 2)2 and the (F F̃ )2 terms are multiplied by(

1 +
40

9

α

π
+ O(α2)

)
and

(
1 +

1315

252

α

π
+ O(α2)

)
, (10.8)

respectively. The corrections become meaningless when we replace α → αg .

10.2.2. Unitarity bound. This would seem to be a devastating objection to the results given
by Ginzburg et al [187, 188] and used in the D0 analysis [189]. But even if one closes one’s
eyes to higher order effects, it seems clear that the mass limits quoted are inconsistent.

If we take the cross section given by (10.5) and make the duality substitution, we obtain
for the low energy light-by-light scattering cross section in the presence of a monopole loop
(M is the monopole mass)

σγγ→γ γ ≈ 973

10125π

m′8

α4

ω6

M8
= 1.08 × 107 m′8 1

M2

( ω

M

)6
. (10.9)

If the cross section were dominated by a single partial wave of angular momentum J , the cross
section would be bounded by

σ � π(2J + 1)

s
∼ 3π

s
, J ∼ 1. (10.10)

Comparing this with the cross section given above, we obtain the following inequality for the
cross section to be consistent with unitarity,

M

ω
� 6|m′|. (10.11)

But the limits quoted by D0 for the monopole mass are less than this:

M

2|m′| > 870 GeV, spin1/2, (10.12)

because, at best, a minimum estimate is 〈ω〉 ∼ 300 GeV, so the theory cannot sensibly be
applied below a monopole mass of about 1 TeV. (Note that changing the value of J in the
unitarity limits has very little effect on the bound since an 8th root is taken: replacing J by 50
reduces the limit only by 50%.)

Similar remarks can be directed towards the De Rújula limits [184]. The author, however,
notes the ‘perilous use of a perturbative expansion in g’. However, although he writes down
the correct vertex, he does not, in fact, use it, instead appealing to duality, and even so he
admittedly omits enormous radiative corrections of O(αg) without any justification other than
what we believe is a specious reference to the use of effective Lagrangian techniques for these
processes.

As we will see, some of these objections apply to the direct search limits. The advantage,
however, of the latter, is that the signal of a positive event is more unambiguous, and in the
Oklahoma and H1 experiments, a monopole, if found, would be available for further study.

11. Oklahoma experiment: Fermilab E882

The best prior experimental limit on the direct accelerator production of magnetic monopoles
is that of Bertani et al in 1990 [169] (see also Price and co-workers [204, 205]):

σ � 2 × 10−34cm2 for a monopole mass M � 850 GeV. (11.1)
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Figure 14. Arrangement of the D0 tracking and transition radiation detectors.

The fundamental mechanism is supposed to be a Drell–Yan process,

p + p̄ → M + M̄ + X, (11.2)

where the cross section is given by

dσ

dM
= (68.5n2)2β3 8πα2

9s

∫
dx1

x1

∑
i

Q2
i qi(x1)q̄i

(
M2

sx1

)
. (11.3)

Here M is the invariant mass of the monopole–antimonopole pair, and we have included a factor
of β3 to reflect (1) phase space and (2) the velocity suppression of the magnetic coupling, as
roughly implied by (5.5)—see also (2.16). Note that we are unable to calculate the elementary
process

qq̄ → γ ∗ → MM̄

perturbatively, so we must use nonperturbative estimates.
Any monopole produced at Fermilab is trapped in the detector elements with 100%

probability due to interaction with the magnetic moments of the nuclei, based on the theory
described in section 9. The experiment consists of running samples obtained from the old
D0 and CDF detectors through a superconducting induction detector. Figure 14 is a sketch
of the D0 detector. We are able to set much better limits than Bertani et al [169] because the
integrated luminosity is 104 times that of the previous 1990 experiment:∫

L = 172 ± 8 pb−1 (D0). (11.4)

We use energy loss formula of Ahlen [133, 134, 206], as described in section 8. The graph in
figure 12 shows the energy loss dE/dx for various materials.

Figure 15 is a diagram of the OU magnetic monopole induction detector. It is a cylindrical
detector, with a warm bore of diameter 10 cm, surrounded by a cylindrical liquid N2 dewer,
which insulated a liquid He dewer. The superconducting loop detectors were within the latter,
concentric with the warm bore. Any current established in the loops was detected by a SQUID.
The entire system was mechanically isolated from the building and magnetically isolated by µ

metal and superconducting lead shields. The magnetic field within the bore was reduced with
the help of Helmholtz coils to about 1% of the earth’s field. Samples were pulled vertically
through the warm bore with a computer-controlled stepper motor. Each traversal took about
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Figure 15. Sketch of the OU induction detector. Shown is a vertical cross section; it should be
imagined as rotated about the vertical axis labelled ‘centreline.’

50 s; every sample run consisted of some 20 up and down traversals. Most samples were run
more than once, and more than 660 samples of Be, Pb and Al from both the old CDF and D0
detectors were analysed over a period of 7 years.

11.1. Monopole induced signal

Note that if the shield were not present, the supercurrent induced by a monopole of strength g

passing through a loop of radius r and inductance L would be given by

I (t) = 2πg

Lc

(
1 − z(t)√

r2 + z(t)2

)
, (11.5)

where z(t) is the vertical position of the monopole relative to the position of the centre of the
loop. A more detailed theory is described in the following. The theory can be verified with a
pseudopole, which is a long, ∼1 m, electromagnetic solenoid, which produces a field near one
end very similar to that produced by a pure magnetic pole. The excellent agreement between
theory and experiment is indicated in figure 16.

11.1.1. Simplified theory of monopole detector. This subsection describes the basis of the
functioning of our magnetic monopole detector. It works by detecting the magnetic flux
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Figure 16. Typical step plots: D0 aluminium, CDF lead and CDF aluminium. The experimental
data were collected from pseudopole simulations; the steps shown are for the difference between
the results with reversed polarizations of the pseudopole. Data agrees well with the theory which
incorporates the effect of the shielded superconducting loops. The theory without the shield, given
by Barger and Ollson [207], is also shown.

intercepted by a superconducting loop contained within a superconducting cylinder. The
detector is sketched in figure 17.

In order to incorporate finite-size effects, we consider first a perfectly conducting right
circular cylinder of radius a of semi-infinite length, with axis along the z-axis, and with a
perfectly conducting circular bottom cap at z = 0. We use cylindrical coordinates ρ, θ and z.

Because the boundaries are superconductors, the normal component of B must vanish on
the surfaces, that is,

Bρ

∣∣∣∣
ρ=a

z>0

= 0, Bz

∣∣∣∣
z=0

= 0. (11.6)

Now suppose a magnetic pole of strength g is placed on the z axis at z = z′ > 0. This could
either be a magnetic monopole (magnetic charge) or one pole of a very long electromagnet
(‘pseudopole’). Imagine a circular conducting loop of radius r < a centred on the axis of the
cylinder and perpendicular to that axis, with centre at z = Z. Inside the cylinder and outside
the loop, B is derivable from a magnetic scalar potential,

B = −∇φM, (11.7)
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Figure 17. Diagram of monopole detector. The monopole g is assumed to be on the central axis at
a height z′ above the bottom of the detector, which we model as a cylindrical perfectly conducting
can of radius a, closed at the bottom. The superconducting loop of radius r is a height Z above the
base.

since we may ignore the displacement current because the time variation is negligible. φM

satisfies Poisson’s equation, in cylindrical coordinates:

∇ · B = −
(

1

ρ

∂

∂ρ
ρ

∂

∂ρ
+

1

ρ2

∂2

∂θ2
+

∂2

∂z2

)
φM = 4πgδ(r − r′), (11.8)

where r′ is the position of the monopole, r′ = (ρ ′, θ ′, z′). This is the equation for a Green’s
function, which we can express in separated variables form. That is, we write

φM = 2

π

∫ ∞

0
dk cos kz cos kz′

∞∑
m=−∞

1

2π
eim(θ−θ ′)gm(ρ, ρ ′; k), (11.9)

where, in view of the first boundary condition in (11.6), we may express the reduced Green’s
function in terms of modified Bessel functions:

gm(ρ, ρ ′; k) = −4πgIm(kρ<)

[
Km(kρ>) − Im(kρ>)

K ′
m(ka)

I ′
m(ka)

]
, (11.10)

where ρ< (ρ>) is the lesser (greater) of ρ, ρ ′. If the monopole is confined to the z axis, only
the m = 0 term survives:

φM = −4g

π

∫ ∞

0
dk cos kz cos kz′

[
K0(kρ) + I0(kρ)

K1(ka)

I1(ka)

]
, (11.11)

which uses

I ′
0(x) = I1(x), K ′

0(x) = −K1(x). (11.12)

By integrating over the cross section of the loop using∫ x

0
dt t K0(t) = −x K1(x) + 1,

∫ x

0
dt t I0(t) = x I1(x), (11.13)

we obtain the following formula for the magnetic flux subtended by the loop,

� =
∫

dS · B = 4πg
[
η(Z − z′) − F(Z, z′)

]
, (11.14)

where the step function is (3.31a) and the response function is

F(z, z′) = 2

π

r

a

∫ ∞

0
dx sin x

z

a
cos x

z′

a

{
K1(xr/a) − I1(xr/a)

K1(x)

I1(x)

}
. (11.15)
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Now suppose that the pole is slowly moved from a point far above the loop, z′ = +∞, to
a point below the loop, z′ = z0, Z > z0. Then from Maxwell’s equation

∇ × E = −1

c

∂

∂t
B − 4π

c
Jm, (11.16)

where Jm is the magnetic current density, the emf induced in the loop is

E =
∮

E · dl, = −d�

cdt
+

4π

c
gδ(t), (11.17)

if t = 0 is the time at which the pole passes through the plane of the loop. The net change in
emf gives rise to a persistent current I in the superconducting loop,

LI =
∫ ∞

−∞
Edt = −1

c
�� +

4π

c
g = 4π

c
gF(Z, z0), (11.18)

where L is the inductance of the loop and the response function F is given in (11.15). This is
just a statement of the Meissner effect that the flux change caused by the moving monopole is
cancelled by that due to the current set up in the loop.

When the loop is very far from the bottom cap, Z � a, only small x contributes to the
integral in equation (11.15), and it is easy to see that∫ ∞

−∞
Edt = 4πg

c

(
1 − r2

a2

)
, (11.19)

so the signal is maximized by making the loop as small as possible, relative to the radius of
the cylinder. We get the full flux of the monopole only for a loop in empty space, a/r → ∞.
This perhaps counterintuitive effect is due to the fact that the superconducting walls confine
the magnetic flux to the interior of the cylinder. Thus for the superconducting can, the induced
current in the detection loop caused by the passage of a monopole from z′ = ∞ to z′ = 0 is

LI = 4πg

c
− ��

c
= 4πg

c
− �(z′ = 0)

c
, (11.20)

which yields the result (11.19) if one assumes that the magnetic field is uniform across the
can’s cross section at the position of the loop when the pole is at the bottom, because all the flux
must pass up through the can. If we consider, instead, an infinite, open-ended, superconducting
cylinder, with the monopole passing from z = +∞ to z = −∞, at either extreme half the flux
must cross the plane of the loop, so with the uniformity assumption we get the same result:

LI = 4πg

c
− ��

c
= 4πg

c

(
1 − r2

a2

)
. (11.21)

The simple assumption of a uniform magnetic field is apparently justified by the exact result
(11.19).

We conclude this discussion by noting how the exact calculation is modified for an infinite
superconducting cylinder. In the magnetic scalar potential, the integral over k mode functions
in (11.9) is replaced by∫ ∞

−∞

dk

2π
eik(z−z′), (11.22)

which has the effect of replacing the flux expression (11.14) by

� = 2πg[ε(z − z′) − F(Z − z′, 0)], (11.23)

where ε(ξ) is given by (3.31b). Then the induced current in the detection loop when the
monopole passes from a point above the loop z′ = Z + ξ to a point, equidistant, below the
loop, z′ = Z − ξ , is

LI = 4πg

c
F(ξ, 0) → 4πg

c

(
1 − r2

a2

)
, (11.24)
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where the last limit applies if ξ/a � 1. This result coincides with that in (11.19). The function
R(ξ) = 1

2F(ξ, 0)/(1 − r2/a2) + 1
2 , corresponding to a monopole starting from a point z1 far

above the loop, z1 − Z � a and ending at a point z0 = Z − ξ , is plotted as a function of ξ for
our parameter values in figure 16(c), where it is shown to agree well with experimental data.
This response function coincides with the result obtained from (11.18) because

F(Z, Z − ξ) = 1

2
F(2Z − ξ, 0) +

1

2
F(ξ, 0) ≈ 1

2

(
1 − r2

a2

)
+

1

2
F(ξ, 0), (11.25)

if Z/a � 1. This shows that the effect of the endcap (which is of course not present in actual
detector) is negligible, demonstrating the fact that the superconducting shield is of finite length
is of no significance.

11.2. Background effects

All nonmagnetic but conducting samples possess the following.

• Permanent magnetic dipole moments µ: These give rise to signals in free space of the
form

I (t) = −2πµz

Lc

r2

[r2 + z(t)2]3/2
. (11.26)

• Induced magnetization: Conducting samples passing though magnetic gradients with
speed v produce time-varying magnetic fields which induce signals in our detector,

I (t) = v

c3

1

L

∫
(dr)r2σ(r2)

∂Bz

∂z′ (z′)
1

r
H

(
z′

r
,
a

r

)
, (11.27)

where H is the response function, essentially that appearing in (11.15),

H

(
z′

r
,
a

r

)
=

∫ ∞

0
dy y cos y

z′

r

[
K1(y) − I1(y)

K1(ya/r)

I1(ya/r)

]
(11.28a)

→ π

2

r3

(r2 + z′2)3/2
, a/r → ∞. (11.28b)

11.3. Calibration, real data and limits

The pseudopole data shown in figure 16 clearly shows that we could detect a Dirac pole. We
demonstrated that the detector (SQUID response) was remarkably linear over a range of 0.7–70
Dirac poles.

As one sees from figure 18, real samples have large dipole signals; what we are looking
for is an asymptotic step indicating the presence of a magnetic charge. Steps seen are typically
much smaller than that expected of a magnetic pole of Dirac strength. The histograms of steps
are shown in figures 19–21.

For m′ = 1/2 the 90% confidence upper limit is 4.2 signal events for 8 events observed
when 10 were expected [208]. These eight samples were remeasured and all fell within
±1.47 mV of m′ = 0. (More than 1.28σ from |m′| = 1/2.) For m′ = 1 the 90% confidence
upper limit is 2.4 signal events for zero events observed and zero expected.

By putting in angular and mass acceptances we can get cross section limits as shown
in table 2. These numbers reflect the new analysis, published in 2004 [21], and so differ
somewhat from our earlier published results [20]. To obtain the mass limits, we use the model
cross sections given in figure 22.

Finally, we show in figure 23 what might be achievable at the LHC, using the same
techniques applied here.
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Figure 18. Steps: D0 Al, CDF Pb and CDF Al.

Figure 19. Steps from D0 samples. A Dirac pole would appear as a step at 2.46 mV.

12. H1 limits

We now turn to the limits on monopole production obtained from e+p collisions at HERA
recently published by the H1 collaboration [209]. This production mechanism is intermediate



Magnetic monopoles 1701

Figure 20. Steps from CDF Pb samples. A Dirac pole would appear as a step at 2.46 mV.

Figure 21. Steps from CDF Al samples. A Schwinger pole (2gD) would appear as a step at
10.64 mV.

between that of pp̄ experiments such as those given in [21] and that of the possible production
through e+e− collisions [185] and might conceivably yield a cleaner interpretation if monopole
condensates are responsible for the confinement of quarks [15,210–212]. Although the mass
limits determined are not as strong as in our experiment described in the previous section, it is
crucial that different physical domains be explored carefully.
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Table 2. Alternative interpretations for different production angular distributions of the monopoles,
comparing 1 and 1 ± cos2 θ . Here the cross section σa corresponds to the distribution 1 + a cos2 θ

and similarly for the mass limits (all at 90% confidence level).

σ ul
+1 mLL

+1 σ ul
0 mLL

0 σ ul
−1 mLL

−1

Set 2m′ (pb) (GeV/c2) (pb) (GeV/c2) (pb) (GeV/c2)

1 Al 1 1.2 250 1.2 240 1.4 220
1 Al RM 1 0.6 275 0.6 265 0.7 245
2 Pb 1 9.9 180 12 165 23 135
2 Pb RM 1 2.4 225 2.9 210 5.9 175
1 Al 2 2.1 280 2.2 270 2.5 250
2 Pb 2 1.0 305 0.9 295 1.1 280
3 Al 2 0.2 365 0.2 355 0.2 340
1 Be 3 3.9 285 5.6 265 47 180
2 Pb 3 0.5 350 0.5 345 0.5 330
3 Al 3 0.07 420 0.07 410 0.06 405
1 Be 6 1.1 330 1.7 305 18 210
3 Al 6 0.2 380 0.2 375 0.2 370

In their experiment, the aluminium beam pipe used at the H1 interaction point at HERA
during 1995–1997 was cut into 75 long and short strips. This beam pipe had been exposed to
an integrated luminosity of 62 ± 1 pb−1. These strips were then placed on a conveyor belt and
passed through a warm-bore magnetometer at Southhampton Oceanographic Centre, UK. If a
monopole passed through the superconducting coil, as in our experiment, it would establish
a persistent current there, which would be detected by a SQUID. Again they calibrated their
detector by a long, thin solenoid, which at each end produced a pseudopole. Calibration was
within some 10% for pole strengths above gD = h̄c/2e. Large dipole signals were seen, but
the signals always returned to the baseline unless a pseudopole was present. A few persistent
current events were seen, but they always disappeared upon remeasurement. Some of the runs
exhibited large fluctuations of unknown origin, but none was consistent with a monopole event.

No monopole was detected in their experiment of strength greater than 0.1gD for a sample
consisting of 93 ± 3% of the beam pipe. To interpret this as a limit on the production cross
section, models had to be adopted, since perturbation theory was unreliable. Two models were
tried:

e+p → e+MM̄p, spin 0 monopole, (12.1a)

e+p → e+MM̄X, spin 1/2 monopole, (12.1b)

where in both the models the monopole pairs were produced by two-photon processes. The
effects on the produced monopoles by the H1 magnetic fields were included. The stopping
power was computed using the classical results of Ahlen [133, 206, 213].

The results of their analysis are expressed in plots of the upper limits on the cross sections
for a given monopole mass, up to a mass of 140 GeV, for different models and magnetic charges.
That is, cross sections above those limits are excluded based on their experimental analysis.
These limits are, of course, weakest for the Dirac charge, gD , and strongest for Schwinger
quantization based on quark charges, 6gD . For model (12.1a) the cross section limits range
from about 1 pb for several giga-electron-volts to more than 100 pb for 140 GeV for gD . For
higher charges the limits are relatively constant around 0.1 pb or less. For (12.1b) the limits
are similar, except for gD , where the limit drops below 0.1 pb for 10 GeV masses or less. Thus
their results are complementary to ours: our mass limits are stronger, but in some cases they
reach smaller cross sections for lower masses.
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Figure 22. Cross section versus mass limits. The three graphs show three different assumptions
about the angular distribution, since even if we knew the spin of the monopole, we cannot at present
predict the differential cross section. Shown in the second figure are the Bertani [169] and lunar [25]
limits.

13. CDF limits

Quite recently, a new CDF experiment [170] has been announced, which claims, on the basis of
an integrated luminosity of 35.7 pb−1, a production cross section limit for spin-1/2 monopoles
below 0.2 pb for masses between 200 and 700 GeV and, hence, in a Drell–Yan model, a lower
mass limit of 360 GeV. (These limits are quoted at the 95% confidence level.) This is based
on technology quite different from the Oklahoma or H1 experiments. Rather, they looked at a
sample of pp̄ events collected during 2003 by the CDF detector by a special trigger. The signal
for a monopole is the large ionization and heavy production of delta rays by such a particle.
They use our crude model of replacing e by gβ in the Drell–Yan production mechanism [20,21],
apart from this simply replacing the lepton mass by the monopole mass. Acceptance is affected
by production kinematics, which effect they estimate at 10%. Light monopoles will be swept
out of the detector by the magnetic field, while heavy monopoles may reach the time-of-flight
detector too late to cause a trigger. Other particles (‘spoilers’) may cause a charge integration
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Figure 23. Monopole pair masses as a function of the cross section at the Tevatron (pp̄ at 2 TeV)
and at the LHC (pp at 14 TeV). Both include the β3 correction and are for a Dirac monopole,
m′ = 1/2.

to start in the detector before a monopole signal arrives; they estimate a few per cent fraction
for a monopole of mass 400 GeV.

Out of 130 000 candidate events, no monopole trigger events were found, from which the
limit quoted above was extracted. They believe they can push the limit on masses up another
100 GeV with additional Run II data.

13.1. Comments on CDF experiment

One might ask how can CDF claim stronger limits than we do based on less than 1/4 of
the integrated luminosity of our experiment. The answer, I believe, is that our experimental
limit is extremely conservative. They may have underestimated the systematic effect of huge
uncertainties in the production mechanism, while at the same time they claim our limit is
dependent on the trapping model, which it is not. Undoubtedly, the dE/dx signature of
monopoles is much less well-understood than the clear-cut electromagnetic signature of an
induction detector. This is not to denigrate the utility of this measurement but to emphasize
that the limits so obtained are subject to large, relatively uncontrolled, uncertainties.

14. Conclusions

One magnetic monopole, carrying magnetic charge g, will result in the quantization of electric
charge throughout the universe,

e = m′h̄c

g
, (14.1)

where m′ is a half-integer,

m′ = 0, ±1

2
, ±1, ±3

2
, ±2, ±5

2
, . . . . (14.2)

That the electric charge is quantized in integer multiples of the electron charge (or integer
multiples of the quark charge) is an overwhelming fact, which does not possess a simple
explanation. This, perhaps, is the most compelling argument in favour of the existence of
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magnetic charge. A second argument is the greater symmetry (duality) imparted to Maxwell’s
equations, and to classical and quantum electrodynamics, if both electric and magnetic charges
are present. Thus, from phenomenological and theoretical bases, the arguments in favour of the
existence of magnetic charge and for dual QED are at least as strong as those for supersymmetry.
Unfortunately, as with the latter, there is not a real shred of observational evidence in favour
of magnetic charge, although here it is far less embarrassing to be in that situation, since the
most likely mass range for magnetically charged particles is not far from the Planck scale.

In this review we have concentrated on the theory of point Dirac monopoles or Schwinger
dyons, starting from the classical scattering, through the nonrelativistic quantum mechanical
description, to the quantum field theory of such objects. For lack of space we have only briefly
referred to the classical monopoles that arise from the solution of non-Abelian gauge theories.
From the point of view of phenomenology and the setting of experimental limits, the point
description should be adequate, since the structure of composite monopoles only emerges at
the energy scale that sets the mass of the particles. (An exception, of course, occurs with limits
based on that structure, such as the catalysis of proton decay.) In addition, our concern has been
chiefly with the quantum description, which has been only roughly sketched for composite
monopoles.

We close, as did Schwinger in his provocative paper [11], by quoting from Faraday:
‘Nothing is too wonderful to be true, if it be consistent with the laws of nature, and in such
things as these, experiment is the best test of such consistency.’
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